BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 18025270)

  • 1. A burst of protein sequence evolution and a prolonged period of asymmetric evolution follow gene duplication in yeast.
    Scannell DR; Wolfe KH
    Genome Res; 2008 Jan; 18(1):137-47. PubMed ID: 18025270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consistent patterns of rate asymmetry and gene loss indicate widespread neofunctionalization of yeast genes after whole-genome duplication.
    Byrne KP; Wolfe KH
    Genetics; 2007 Mar; 175(3):1341-50. PubMed ID: 17194778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication.
    Scannell DR; Frank AC; Conant GC; Byrne KP; Woolfit M; Wolfe KH
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8397-402. PubMed ID: 17494770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate asymmetry after genome duplication causes substantial long-branch attraction artifacts in the phylogeny of Saccharomyces species.
    Fares MA; Byrne KP; Wolfe KH
    Mol Biol Evol; 2006 Feb; 23(2):245-53. PubMed ID: 16207937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reorganization of adjacent gene relationships in yeast genomes by whole-genome duplication and gene deletion.
    Byrnes JK; Morris GP; Li WH
    Mol Biol Evol; 2006 Jun; 23(6):1136-43. PubMed ID: 16527865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast genome duplication was followed by asynchronous differentiation of duplicated genes.
    Langkjaer RB; Cliften PF; Johnston M; Piskur J
    Nature; 2003 Feb; 421(6925):848-52. PubMed ID: 12594514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased rates of protein evolution and asymmetric deceleration after the whole-genome duplication in yeasts.
    Ascencio D; Ochoa S; Delaye L; DeLuna A
    BMC Evol Biol; 2017 Feb; 17(1):40. PubMed ID: 28166720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Codon-usage bias versus gene conversion in the evolution of yeast duplicate genes.
    Lin YS; Byrnes JK; Hwang JK; Li WH
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14412-6. PubMed ID: 16971485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis.
    Sémon M; Wolfe KH
    Proc Natl Acad Sci U S A; 2008 Jun; 105(24):8333-8. PubMed ID: 18541921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric functional divergence of duplicate genes in yeast.
    Wagner A
    Mol Biol Evol; 2002 Oct; 19(10):1760-8. PubMed ID: 12270902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution.
    He X; Zhang J
    Genetics; 2005 Feb; 169(2):1157-64. PubMed ID: 15654095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico evidence for functional specialization after genome duplication in yeast.
    Turunen O; Seelke R; Macosko J
    FEMS Yeast Res; 2009 Feb; 9(1):16-31. PubMed ID: 19133069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates.
    Kassahn KS; Dang VT; Wilkins SJ; Perkins AC; Ragan MA
    Genome Res; 2009 Aug; 19(8):1404-18. PubMed ID: 19439512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis indicates regulatory neofunctionalization of yeast duplicates.
    Tirosh I; Barkai N
    Genome Biol; 2007; 8(4):R50. PubMed ID: 17411427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene complexity and gene duplicability.
    He X; Zhang J
    Curr Biol; 2005 Jun; 15(11):1016-21. PubMed ID: 15936271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid reorganization of the transcriptional regulatory network after genome duplication in yeast.
    Conant GC
    Proc Biol Sci; 2010 Mar; 277(1683):869-76. PubMed ID: 19923128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rapid Evolution of an Ohnolog Contributes to the Ecological Specialization of Incipient Yeast Species.
    Eberlein C; Nielly-Thibault L; Maaroufi H; Dubé AK; Leducq JB; Charron G; Landry CR
    Mol Biol Evol; 2017 Sep; 34(9):2173-2186. PubMed ID: 28482005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution after whole-genome duplication: a network perspective.
    Zhu Y; Lin Z; Nakhleh L
    G3 (Bethesda); 2013 Nov; 3(11):2049-57. PubMed ID: 24048644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased glycolytic flux as an outcome of whole-genome duplication in yeast.
    Conant GC; Wolfe KH
    Mol Syst Biol; 2007; 3():129. PubMed ID: 17667951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved functions of yeast genes support the duplication, degeneration and complementation model for gene duplication.
    van Hoof A
    Genetics; 2005 Dec; 171(4):1455-61. PubMed ID: 15965245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.