These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 18025569)
1. Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Singhania RR; Sukumaran RK; Pandey A Appl Biochem Biotechnol; 2007 Jul; 142(1):60-70. PubMed ID: 18025569 [TBL] [Abstract][Full Text] [Related]
2. Cellulase production under solid-state fermentation by Trichoderma reesei RUT C30: statistical optimization of process parameters. Mekala NK; Singhania RR; Sukumaran RK; Pandey A Appl Biochem Biotechnol; 2008 Dec; 151(2-3):122-31. PubMed ID: 18975142 [TBL] [Abstract][Full Text] [Related]
3. Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. Maurya DP; Singh D; Pratap D; Maurya JP J Environ Biol; 2012 Jan; 33(1):5-8. PubMed ID: 23033636 [TBL] [Abstract][Full Text] [Related]
4. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA BMC Biotechnol; 2015 May; 15():37. PubMed ID: 26018951 [TBL] [Abstract][Full Text] [Related]
5. Effect of pH on cellulase production of Trichoderma reesei RUT C30. Juhász T; Szengyel Z; Szijártó N; Réczey K Appl Biochem Biotechnol; 2004; 113-116():201-11. PubMed ID: 15054207 [TBL] [Abstract][Full Text] [Related]
6. Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Xin F; Geng A Appl Biochem Biotechnol; 2010 Sep; 162(1):295-306. PubMed ID: 19707729 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose. Szijártó N; Szengyel Z; Lidén G; Réczey K Appl Biochem Biotechnol; 2004; 113-116():115-24. PubMed ID: 15054199 [TBL] [Abstract][Full Text] [Related]
8. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Idris ASO; Pandey A; Rao SS; Sukumaran RK Bioresour Technol; 2017 Oct; 242():265-271. PubMed ID: 28366693 [TBL] [Abstract][Full Text] [Related]
9. White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: simultaneous saccharification and fermentation. Zhi Z; Wang H Bioprocess Biosyst Eng; 2014 Jul; 37(7):1447-58. PubMed ID: 24429553 [TBL] [Abstract][Full Text] [Related]
10. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass. Meng QS; Liu CG; Zhao XQ; Bai FW J Biotechnol; 2018 Nov; 285():56-63. PubMed ID: 30194052 [TBL] [Abstract][Full Text] [Related]
11. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Li C; Lin F; Li Y; Wei W; Wang H; Qin L; Zhou Z; Li B; Wu F; Chen Z Microb Cell Fact; 2016 Sep; 15(1):151. PubMed ID: 27585813 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Latifian M; Hamidi-Esfahani Z; Barzegar M Bioresour Technol; 2007 Dec; 98(18):3634-7. PubMed ID: 17207619 [TBL] [Abstract][Full Text] [Related]
13. Saccharification of biomass using whole solid-state fermentation medium to avoid additional separation steps. Pirota RD; Baleeiro FC; Farinas CS Biotechnol Prog; 2013; 29(6):1430-40. PubMed ID: 24115639 [TBL] [Abstract][Full Text] [Related]
14. Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. Hari Krishna S; Chowdary GV J Agric Food Chem; 2000 May; 48(5):1971-6. PubMed ID: 10820123 [TBL] [Abstract][Full Text] [Related]
15. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production. Pandey RK; Chand K; Tewari L J Sci Food Agric; 2018 Sep; 98(12):4411-4419. PubMed ID: 29435990 [TBL] [Abstract][Full Text] [Related]
16. Medium supplementation and thorough optimization to induce carboxymethyl cellulase production by Taherzadeh-Ghahfarokhi M; Panahi R; Mokhtarani B Prep Biochem Biotechnol; 2022; 52(4):375-382. PubMed ID: 34319847 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of cellulase production in Trichoderma reesei RUT-C30 by comparative genomic screening. Liu P; Lin A; Zhang G; Zhang J; Chen Y; Shen T; Zhao J; Wei D; Wang W Microb Cell Fact; 2019 May; 18(1):81. PubMed ID: 31077201 [TBL] [Abstract][Full Text] [Related]
18. Optimization of cellulolytic enzyme components through engineering Li YH; Zhang XY; Zhang F; Peng LC; Zhang DB; Kondo A; Bai FW; Zhao XQ Biotechnol Biofuels; 2018; 11():49. PubMed ID: 29483942 [TBL] [Abstract][Full Text] [Related]
19. Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass. Treebupachatsakul T; Shioya K; Nakazawa H; Kawaguchi T; Morikawa Y; Shida Y; Ogasawara W; Okada H J Biosci Bioeng; 2015 Dec; 120(6):657-65. PubMed ID: 26026380 [TBL] [Abstract][Full Text] [Related]
20. Cost-effective production of cellulose hydrolysing enzymes from Trichoderma sp. RCK65 under SSF and its evaluation in saccharification of cellulosic substrates. Chakraborty S; Gupta R; Jain KK; Kuhad RC Bioprocess Biosyst Eng; 2016 Nov; 39(11):1659-70. PubMed ID: 27344316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]