These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 18025583)
1. Production of raw starch-saccharifying thermostable and neutral glucoamylase by the thermophilic mold Thermomucor indicae-seudaticae in submerged fermentation. Kumar S; Kumar P; Satyanarayana T Appl Biochem Biotechnol; 2007 Sep; 142(3):221-30. PubMed ID: 18025583 [TBL] [Abstract][Full Text] [Related]
2. Economical glucoamylase production by alginate-immobilized Thermomucor indicae-seudaticae in cane molasses medium. Kumar P; Satyanarayana T Lett Appl Microbiol; 2007 Oct; 45(4):392-7. PubMed ID: 17897381 [TBL] [Abstract][Full Text] [Related]
3. Overproduction of glucoamylase by a deregulated mutant of a thermophilic mould Thermomucor indicae-seudaticae. Kumar P; Satyanarayana T Appl Biochem Biotechnol; 2009 Jul; 158(1):113-25. PubMed ID: 18769880 [TBL] [Abstract][Full Text] [Related]
4. Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods. Kumar P; Satyanarayana T Bioresour Technol; 2007 Apr; 98(6):1252-9. PubMed ID: 16806908 [TBL] [Abstract][Full Text] [Related]
5. Purification and kinetics of a raw starch-hydrolyzing, thermostable, and neutral glucoamylase of the thermophilic mold Thermomucor indicae-seudaticae. Kumar S; Satyanarayana T Biotechnol Prog; 2003; 19(3):936-44. PubMed ID: 12790660 [TBL] [Abstract][Full Text] [Related]
6. Characterization of a neutral and thermostable glucoamylase from the thermophilic mold Thermomucor indicae-seudaticae: activity, stability, and structural correlation. Kumar P; Islam A; Ahmad F; Satyanarayana T Appl Biochem Biotechnol; 2010 Mar; 160(3):879-90. PubMed ID: 19484200 [TBL] [Abstract][Full Text] [Related]
7. Production and characterization of a milk-clotting protease produced in submerged fermentation by the thermophilic fungus Thermomucor indicae-seudaticae N31. Silva BL; Geraldes FM; Murari CS; Gomes E; Da-Silva R Appl Biochem Biotechnol; 2014 Feb; 172(4):1999-2011. PubMed ID: 24318590 [TBL] [Abstract][Full Text] [Related]
8. Application of Response Surface Methodology for Optimization of Extracellular Glucoamylase Production by Candida guilliermondii. Mohamed L; Kettani YE; Ali A; Mohamed E; Mohamed J Pak J Biol Sci; 2017; 20(2):100-107. PubMed ID: 29023000 [TBL] [Abstract][Full Text] [Related]
9. Production of cellulases by Martins EDS; Gomes E; da Silva R; Junior RB Prep Biochem Biotechnol; 2019; 49(8):830-836. PubMed ID: 31274051 [TBL] [Abstract][Full Text] [Related]
10. Pectinase production by a Brazilian thermophilic fungus Thermomucor indicae-seudaticae N31 in solid-state and submerged fermentation. Martin N; Guez MA; Sette LD; Da Silva R; Gomes E Mikrobiologiia; 2010; 79(3):321-8. PubMed ID: 20734812 [TBL] [Abstract][Full Text] [Related]
11. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes. Kim HR; Im YK; Ko HM; Chin JE; Kim IC; Lee HB; Bai S Biotechnol Lett; 2011 Aug; 33(8):1643-8. PubMed ID: 21479627 [TBL] [Abstract][Full Text] [Related]
12. Efficient and cost-reduced glucoamylase fed-batch production with alternative carbon sources. Luo H; Liu H; He Z; Zhou C; Shi Z J Microbiol Biotechnol; 2015 Feb; 25(2):185-95. PubMed ID: 25262682 [TBL] [Abstract][Full Text] [Related]
13. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. Kilonzo P; Margaritis A; Bergougnou M J Biotechnol; 2009 Aug; 143(1):60-8. PubMed ID: 19539672 [TBL] [Abstract][Full Text] [Related]
14. Improvement of biomass production and glucoamylase activity by Candida famata using factorial design. Mosbah H; Aissa I; Hassad N; Farh D; Bakhrouf A; Achour S Biotechnol Appl Biochem; 2016 Jul; 63(4):572-80. PubMed ID: 25923734 [TBL] [Abstract][Full Text] [Related]
15. Development of an ideal starch saccharification process using amylolytic enzymes from thermophiles. Satyanarayana T; Noorwez SM; Kumar S; Rao JL; Ezhilvannan M; Kaur P Biochem Soc Trans; 2004 Apr; 32(Pt 2):276-8. PubMed ID: 15046588 [TBL] [Abstract][Full Text] [Related]
16. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903 [TBL] [Abstract][Full Text] [Related]
17. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol. Wang R; Wang D; Gao X; Hong J Biotechnol Prog; 2014; 30(2):338-47. PubMed ID: 24478139 [TBL] [Abstract][Full Text] [Related]
18. Influence of different substrates on the production of a mutant thermostable glucoamylase in submerged fermentation. Pavezzi FC; Carneiro AA; Bocchini-Martins DA; Alves-Prado HF; Ferreira H; Martins PM; Gomes E; da Silva R Appl Biochem Biotechnol; 2011 Jan; 163(1):14-24. PubMed ID: 20414741 [TBL] [Abstract][Full Text] [Related]
19. Characterization of an organic solvent-tolerant thermostable glucoamylase from a halophilic isolate, Halolactibacillus sp. SK71 and its application in raw starch hydrolysis for bioethanol production. Yu HY; Li X Biotechnol Prog; 2014; 30(6):1262-8. PubMed ID: 25138675 [TBL] [Abstract][Full Text] [Related]
20. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Shigechi H; Koh J; Fujita Y; Matsumoto T; Bito Y; Ueda M; Satoh E; Fukuda H; Kondo A Appl Environ Microbiol; 2004 Aug; 70(8):5037-40. PubMed ID: 15294847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]