BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18025603)

  • 21. Modeling the angiotensin-converting enzyme inhibitory activity of peptide mixtures obtained from cheese whey hydrolysates using concentration-response curves.
    Estévez N; Fuciños P; Sobrosa AC; Pastrana L; Pérez N; Luisa Rúa M
    Biotechnol Prog; 2012; 28(5):1197-206. PubMed ID: 22736636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Hydrolysis of peptides by immobilized bacterial peptide hydrolases].
    Nekliudov AD; Deniakina EK
    Prikl Biokhim Mikrobiol; 2004; 40(4):435-41. PubMed ID: 15455716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of bitterness in Ragusano cheese.
    Fallico V; McSweeney PL; Horne J; Pediliggieri C; Hannon JA; Carpino S; Licitra G
    J Dairy Sci; 2005 Apr; 88(4):1288-300. PubMed ID: 15778296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Utilization of Cheese Whey Using Synergistic Immobilization of β-Galactosidase and Saccharomyces cerevisiae Cells in Dual Matrices.
    Kokkiligadda A; Beniwal A; Saini P; Vij S
    Appl Biochem Biotechnol; 2016 Aug; 179(8):1469-84. PubMed ID: 27059625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of temperature and pH on the nonenzymatic reduction of triphenyltetrazolium chloride.
    Mahmoud NS; Ghaly AE
    Biotechnol Prog; 2004; 20(1):346-53. PubMed ID: 14763862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of Antioxidant and ACEI Peptides from Cheese Whey Discarded from Mexican White Cheese Production.
    Martín-Del-Campo ST; Martínez-Basilio PC; Sepúlveda-Álvarez JC; Gutiérrez-Melchor SE; Galindo-Peña KD; Lara-Domínguez AK; Cardador-Martínez A
    Antioxidants (Basel); 2019 Jun; 8(6):. PubMed ID: 31163620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and hydrolysis kinetic of a novel antioxidant peptide from pecan meal using Alcalase.
    Hu F; Ci AT; Wang H; Zhang YY; Zhang JG; Thakur K; Wei ZJ
    Food Chem; 2018 Sep; 261():301-310. PubMed ID: 29739598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxyl agarose.
    Tardioli PW; Pedroche J; Giordano RL; Fernández-Lafuente R; Guisán JM
    Biotechnol Prog; 2003; 19(2):352-60. PubMed ID: 12675571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of the enzymatic hydrolysis of chicken meat using response surface methodology.
    Kurozawa LE; Park KJ; Hubinger MD
    J Food Sci; 2008 Jun; 73(5):C405-12. PubMed ID: 18576986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of ricotta cheese whey (RCW) fermentation by response surface methodology.
    Sansonetti S; Curcio S; Calabrò V; Iorio G
    Bioresour Technol; 2010 Dec; 101(23):9156-62. PubMed ID: 20673713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic synthesis of amoxicillin: avoiding limitations of the mechanistic approach for reaction kinetics.
    Gonçalves LR; Sousa R; Fernandez-Lafuente R; Guisan JM; Giordano RL; Giordano RC
    Biotechnol Bioeng; 2002 Dec; 80(6):622-31. PubMed ID: 12378603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimisation of cheese whey enzymatic hydrolysis and further continuous production of antimicrobial extracts by Lactobacillus plantarum CECT-221.
    Rodríguez-Pazo N; da Silva Sabo S; Salgado-Seara JM; Arni SA; de Souza Oliveira RP; Domínguez JM
    J Dairy Res; 2016 Aug; 83(3):402-11. PubMed ID: 27600978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophoresis of cottage cheese whey proteins and their polymers.
    Lee DN; Moore EE; Merson RL
    J Dairy Sci; 1975 May; 58(5):658-67. PubMed ID: 237944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance evaluation of whey flux in dead-end and cross-flow modes via convolutional neural networks.
    Yogarathinam LT; Velswamy K; Gangasalam A; Ismail AF; Goh PS; Narayanan A; Abdullah MS
    J Environ Manage; 2022 Jan; 301():113872. PubMed ID: 34607142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of chymosin type and curd scalding temperature on proteolysis of hard cooked cheeses.
    Costabel LM; Bergamini CV; Pozza L; Cuffia F; Candioti MC; Hynes E
    J Dairy Res; 2015 Aug; 82(3):375-84. PubMed ID: 25876792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study.
    Wu Q; Du J; Jia J; Kuang C
    Food Chem; 2016 May; 199():140-9. PubMed ID: 26775955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A model to assess lactic acid bacteria aminopeptidase activities in Parmigiano Reggiano cheese during ripening.
    Gatti M; De Dea Lindner J; Gardini F; Mucchetti G; Bevacqua D; Fornasari ME; Neviani E
    J Dairy Sci; 2008 Nov; 91(11):4129-37. PubMed ID: 18946116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of brine concentration and temperature on composition, microstructure, and yield of feta cheese.
    McMahon DJ; Motawee MM; McManus WR
    J Dairy Sci; 2009 Sep; 92(9):4169-79. PubMed ID: 19700677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane.
    Vasileva N; Ivanov Y; Damyanova S; Kostova I; Godjevargova T
    Int J Biol Macromol; 2016 Jan; 82():339-46. PubMed ID: 26586589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.