BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

598 related articles for article (PubMed ID: 18026087)

  • 1. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis.
    Henzler-Wildman KA; Lei M; Thai V; Kerns SJ; Karplus M; Kern D
    Nature; 2007 Dec; 450(7171):913-6. PubMed ID: 18026087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions.
    Ojeda-May P; Mushtaq AU; Rogne P; Verma A; Ovchinnikov V; Grundström C; Dulko-Smith B; Sauer UH; Wolf-Watz M; Nam K
    Biochemistry; 2021 Jul; 60(28):2246-2258. PubMed ID: 34250801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair.
    Wolf-Watz M; Thai V; Henzler-Wildman K; Hadjipavlou G; Eisenmesser EZ; Kern D
    Nat Struct Mol Biol; 2004 Oct; 11(10):945-9. PubMed ID: 15334070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding funnels and conformational transitions via hinge-bending motions.
    Kumar S; Ma B; Tsai CJ; Wolfson H; Nussinov R
    Cell Biochem Biophys; 1999; 31(2):141-64. PubMed ID: 10593256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling (15)N-NMR relaxation data.
    Temiz NA; Meirovitch E; Bahar I
    Proteins; 2004 Nov; 57(3):468-80. PubMed ID: 15382240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesophilic and hyperthermophilic adenylate kinases differ in their tolerance to random fragmentation.
    Segall-Shapiro TH; Nguyen PQ; Dos Santos ED; Subedi S; Judd J; Suh J; Silberg JJ
    J Mol Biol; 2011 Feb; 406(1):135-48. PubMed ID: 21145325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interconversion of functional motions between mesophilic and thermophilic adenylate kinases.
    Daily MD; Phillips GN; Cui Q
    PLoS Comput Biol; 2011 Jul; 7(7):e1002103. PubMed ID: 21779157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme millisecond conformational dynamics do not catalyze the chemical step.
    Pisliakov AV; Cao J; Kamerlin SC; Warshel A
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17359-64. PubMed ID: 19805169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational heterogeneity within the LID domain mediates substrate binding to Escherichia coli adenylate kinase: function follows fluctuations.
    Schrank TP; Wrabl JO; Hilser VJ
    Top Curr Chem; 2013; 337():95-121. PubMed ID: 23543318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling (15)N NMR relaxation.
    Tugarinov V; Shapiro YE; Liang Z; Freed JH; Meirovitch E
    J Mol Biol; 2002 Jan; 315(2):155-70. PubMed ID: 11779236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain flexibility in ligand-free and inhibitor-bound Escherichia coli adenylate kinase based on a mode-coupling analysis of 15N spin relaxation.
    Shapiro YE; Kahana E; Tugarinov V; Liang Z; Freed JH; Meirovitch E
    Biochemistry; 2002 May; 41(20):6271-81. PubMed ID: 12009888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic motions along an enzymatic reaction trajectory.
    Henzler-Wildman KA; Thai V; Lei M; Ott M; Wolf-Watz M; Fenn T; Pozharski E; Wilson MA; Petsko GA; Karplus M; Hübner CG; Kern D
    Nature; 2007 Dec; 450(7171):838-44. PubMed ID: 18026086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation energy of catalysis-related domain motion in E. coli adenylate kinase.
    Shapiro YE; Meirovitch E
    J Phys Chem B; 2006 Jun; 110(23):11519-24. PubMed ID: 16771428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for ligand binding to an enzyme by a conformational selection pathway.
    Kovermann M; Grundström C; Sauer-Eriksson AE; Sauer UH; Wolf-Watz M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6298-6303. PubMed ID: 28559350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of static and dynamic domains in stability and catalysis of adenylate kinase.
    Bae E; Phillips GN
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2132-7. PubMed ID: 16452168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme dynamics during catalysis measured by NMR spectroscopy.
    Kern D; Eisenmesser EZ; Wolf-Watz M
    Methods Enzymol; 2005; 394():507-24. PubMed ID: 15808235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small- and large-scale conformational changes of adenylate kinase: a molecular dynamics study of the subdomain motion and mechanics.
    Pontiggia F; Zen A; Micheletti C
    Biophys J; 2008 Dec; 95(12):5901-12. PubMed ID: 18931260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics in Thermotoga neapolitana adenylate kinase: 15N relaxation and hydrogen-deuterium exchange studies of a hyperthermophilic enzyme highly active at 30 degrees C.
    Krishnamurthy H; Munro K; Yan H; Vieille C
    Biochemistry; 2009 Mar; 48(12):2723-39. PubMed ID: 19220019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential dynamics sampling study of adenylate kinase: comparison to citrate synthase and implication for the hinge and shear mechanisms of domain motions.
    Snow C; Qi G; Hayward S
    Proteins; 2007 May; 67(2):325-37. PubMed ID: 17299745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backbone dynamics of escherichia coli adenylate kinase at the extreme stages of the catalytic cycle studied by (15)N NMR relaxation.
    Shapiro YE; Sinev MA; Sineva EV; Tugarinov V; Meirovitch E
    Biochemistry; 2000 Jun; 39(22):6634-44. PubMed ID: 10828981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.