These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18026420)

  • 1. Low-power Lamb-dip spectroscopy of very weak CO(2) transitions near 4.25 mum.
    Mazzotti D; Borri S; Cancio P; Giusfredi G; De Natale P
    Opt Lett; 2002 Jul; 27(14):1256-8. PubMed ID: 18026420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4.8 μm difference-frequency generation using a waveguide-PPLN crystal and its application to mid-infrared Lamb-dip spectroscopy.
    Kuma S; Miyamoto Y; Tsutsumi K; Sasao N; Uetake S
    Opt Lett; 2013 Aug; 38(15):2825-8. PubMed ID: 23903153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3(+).
    Chen HC; Hsiao CY; Peng JL; Amano T; Shy JT
    Phys Rev Lett; 2012 Dec; 109(26):263002. PubMed ID: 23368556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lamb dip CRDS of highly saturated transitions of water near 1.4 μm.
    Kassi S; Stoltmann T; Casado M; Daëron M; Campargue A
    J Chem Phys; 2018 Feb; 148(5):054201. PubMed ID: 29421897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saturated-absorption spectroscopy with low-power difference-frequency radiation.
    Mazzotti D; De Natale P; Giusfredi G; Fort C; Mitchell JA; Hollberg L
    Opt Lett; 2000 Mar; 25(5):350-2. PubMed ID: 18059877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: Saturated CO2 absorption near 1.6 μm for kilohertz-accuracy transition frequencies.
    Burkart J; Sala T; Romanini D; Marangoni M; Campargue A; Kassi S
    J Chem Phys; 2015 May; 142(19):191103. PubMed ID: 26001440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO(3) channel waveguides.
    Hofmann D; Schreiber G; Haase C; Herrmann H; Grundkötter W; Ricken R; Sohler W
    Opt Lett; 1999 Jul; 24(13):896-8. PubMed ID: 18073888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comb-locked cavity ring-down saturation spectroscopy.
    Wang J; Sun YR; Tao LG; Liu AW; Hua TP; Meng F; Hu SM
    Rev Sci Instrum; 2017 Apr; 88(4):043108. PubMed ID: 28456258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-power frequency comb source tunable from 2.7 to 4.2  μm based on difference frequency generation pumped by an Yb-doped fiber laser.
    Soboń G; Martynkien T; Mergo P; Rutkowski L; Foltynowicz A
    Opt Lett; 2017 May; 42(9):1748-1751. PubMed ID: 28454151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comb-locked Lamb-dip spectrometer.
    Gatti D; Gotti R; Gambetta A; Belmonte M; Galzerano G; Laporta P; Marangoni M
    Sci Rep; 2016 Jun; 6():27183. PubMed ID: 27263858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comb coherence-transfer and cavity ring-down saturation spectroscopy around 1.65 μm: kHz-accurate frequencies of transitions in the 2ν
    Votava O; Kassi S; Campargue A; Romanini D
    Phys Chem Chem Phys; 2022 Feb; 24(7):4157-4173. PubMed ID: 35107098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy.
    Bucher CR; Lehmann KK; Plusquellic DF; Fraser GT
    Appl Opt; 2000 Jun; 39(18):3154-64. PubMed ID: 18345246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave.
    Klein ME; Laue CK; Lee DH; Boller KJ; Wallenstein R
    Opt Lett; 2000 Apr; 25(7):490-2. PubMed ID: 18064089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widely tunable difference frequency generation source for high-precision mid-infrared spectroscopy.
    Liao CC; Lien YH; Wu KY; Lin YR; Shy JT
    Opt Express; 2013 Apr; 21(8):9238-46. PubMed ID: 23609634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator.
    Zhu F; Hundertmark H; Kolomenskii AA; Strohaber J; Holzwarth R; Schuessler HA
    Opt Lett; 2013 Jul; 38(13):2360-2. PubMed ID: 23811928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5 μm laser source for frequency metrology based on difference frequency generation.
    Bressel U; Ernsting I; Schiller S
    Opt Lett; 2012 Mar; 37(5):918-20. PubMed ID: 22378438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-based dispersion Lamb-dip spectroscopy in a high finesse optical cavity.
    Bielska K; Cygan A; Konefał M; Kowzan G; Zaborowski M; Charczun D; Wójtewicz S; Wcisło P; Masłowski P; Ciuryło R; Lisak D
    Opt Express; 2021 Nov; 29(24):39449-39460. PubMed ID: 34809309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavity-enhanced saturated absorption spectroscopy of the (30012) - (00001) band of
    Tan Y; Xu YR; Hua TP; Liu AW; Wang J; Sun YR; Hu SM
    J Chem Phys; 2022 Jan; 156(4):044201. PubMed ID: 35105067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-precision and high-accuracy rovibrational spectroscopy of molecular ions.
    Hodges JN; Perry AJ; Jenkins PA; Siller BM; McCall BJ
    J Chem Phys; 2013 Oct; 139(16):164201. PubMed ID: 24182022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mid-infrared difference-frequency generation in periodically poled KTiOAsO(4) and application to gas sensing.
    Fradkin-Kashi K; Arie A; Urenski P; Rosenman G
    Opt Lett; 2000 May; 25(10):743-5. PubMed ID: 18064170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.