BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 18026702)

  • 41. Investigation of the role and mechanism of IF1 and STF1 proteins, twin inhibitory peptides which interact with the yeast mitochondrial ATP synthase.
    Venard R; Brèthes D; Giraud MF; Vaillier J; Velours J; Haraux F
    Biochemistry; 2003 Jun; 42(24):7626-36. PubMed ID: 12809520
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thiol modulation of the chloroplast ATP synthase is dependent on the energization of thylakoid membranes.
    Konno H; Nakane T; Yoshida M; Ueoka-Nakanishi H; Hara S; Hisabori T
    Plant Cell Physiol; 2012 Apr; 53(4):626-34. PubMed ID: 22362842
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.
    Gaballo A; Zanotti F; Papa S
    Curr Protein Pept Sci; 2002 Aug; 3(4):451-60. PubMed ID: 12370007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F
    Lapashina AS; Shugaeva TE; Berezina KM; Kholina TD; Feniouk BA
    Biochemistry (Mosc); 2019 Apr; 84(4):407-415. PubMed ID: 31228932
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: F(0)F(1)-ATP synthase is absent from about half of chromatophores.
    Feniouk BA; Cherepanov DA; Junge W; Mulkidjanian AY
    Biochim Biophys Acta; 2001 Nov; 1506(3):189-203. PubMed ID: 11779552
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy-dependent transformation of F0.F1-ATPase in Paracoccus denitrificans plasma membranes.
    Zharova TV; Vinogradov AD
    J Biol Chem; 2004 Mar; 279(13):12319-24. PubMed ID: 14722115
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solution structure of subunit F(6) from the peripheral stalk region of ATP synthase from bovine heart mitochondria.
    Carbajo RJ; Silvester JA; Runswick MJ; Walker JE; Neuhaus D
    J Mol Biol; 2004 Sep; 342(2):593-603. PubMed ID: 15327958
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Depletion of stromal P(i) induces high 'energy-dependent' antenna exciton quenching (q(E)) by decreasing proton conductivity at CF(O)-CF(1) ATP synthase.
    Takizawa K; Kanazawa A; Kramer DM
    Plant Cell Environ; 2008 Feb; 31(2):235-43. PubMed ID: 17996016
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The F1FO ATP synthase genes in Methanosarcina acetivorans are dispensable for growth and ATP synthesis.
    Saum R; Schlegel K; Meyer B; Müller V
    FEMS Microbiol Lett; 2009 Nov; 300(2):230-6. PubMed ID: 19796137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane.
    Steinberg-Yfrach G; Rigaud JL; Durantini EN; Moore AL; Gust D; Moore TA
    Nature; 1998 Apr; 392(6675):479-82. PubMed ID: 9548252
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mitochondrial ATP synthase residue betaarginine-408, which interacts with the inhibitory site of regulatory protein IF1, is essential for the function of the enzyme.
    Ichikawa N; Chisuwa N; Tanase M; Nakamura M
    J Biochem; 2005 Aug; 138(2):201-7. PubMed ID: 16091595
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subunit movement in individual H+-ATP synthases during ATP synthesis and hydrolysis revealed by fluorescence resonance energy transfer.
    Börsch M; Gräber P
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):878-82. PubMed ID: 16042618
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [The efficiency of ATP synthase as a molecular machine].
    Buchachenko AL; Kuznetsov DA
    Biofizika; 2008; 53(3):451-6. PubMed ID: 18634317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Location of subunit d in the peripheral stalk of the ATP synthase from Saccharomyces cerevisiae.
    Bueler SA; Rubinstein JL
    Biochemistry; 2008 Nov; 47(45):11804-10. PubMed ID: 18937496
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A γ-subunit point mutation in Chlamydomonas reinhardtii chloroplast F
    Buchert F; Bailleul B; Hisabori T
    Biochim Biophys Acta Bioenerg; 2017 Dec; 1858(12):966-974. PubMed ID: 28890176
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biophysics and bioinformatics reveal structural differences of the two peripheral stalk subunits in chloroplast ATP synthase.
    Poetsch A; Berzborn RJ; Heberle J; Link TA; Dencher NA; Seelert H
    J Biochem; 2007 Mar; 141(3):411-20. PubMed ID: 17283010
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Attenuated ADP-inhibition of F
    Lapashina AS; Kashko ND; Zubareva VM; Galkina KV; Markova OV; Knorre DA; Feniouk BA
    Biochim Biophys Acta Bioenerg; 2022 Jun; 1863(5):148544. PubMed ID: 35331734
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Making the right moves.
    Bianchet MA; Amzel LM
    Structure; 2007 Aug; 15(8):885-6. PubMed ID: 17697991
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proton flux through the chloroplast ATP synthase is altered by cleavage of its gamma subunit.
    McCallum JR; McCarty RE
    Biochim Biophys Acta; 2007 Jul; 1767(7):974-9. PubMed ID: 17559799
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy Equivalence of Information in the Mitochondrion and the Thermodynamic Efficiency of ATP Synthase.
    Matta CF; Massa L
    Biochemistry; 2015 Sep; 54(34):5376-8. PubMed ID: 26243158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.