These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18026987)

  • 1. High frequency (900 MHz) low amplitude (5 V m-1) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato.
    Roux D; Vian A; Girard S; Bonnet P; Paladian F; Davies E; Ledoigt G
    Planta; 2008 Mar; 227(4):883-91. PubMed ID: 18026987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intercellular communication in plants: evidence for two rapidly transmitted systemic signals generated in response to electromagnetic field stimulation in tomato.
    Beaubois E; Girard S; Lallechere S; Davies E; Paladian F; Bonnet P; Ledoigt G; Vian A
    Plant Cell Environ; 2007 Jul; 30(7):834-44. PubMed ID: 17547655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and systemic accumulation of chloroplast mRNA-binding protein transcripts after flame stimulus in tomato.
    Vian A; Henry-Vian C; Davies E
    Plant Physiol; 1999 Oct; 121(2):517-24. PubMed ID: 10517843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt stress activation of wound-related genes in tomato plants.
    Dombrowski JE
    Plant Physiol; 2003 Aug; 132(4):2098-107. PubMed ID: 12913164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content.
    Efthimiadou A; Katsenios N; Karkanis A; Papastylianou P; Triantafyllidis V; Travlos I; Bilalis DJ
    ScientificWorldJournal; 2014; 2014():369745. PubMed ID: 25097875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological responses and molecular modifications in tomato plants after mechanical stimulation.
    Depège N; Thonat C; Coutand C; Julien JL; Boyer N
    Plant Cell Physiol; 1997 Oct; 38(10):1127-34. PubMed ID: 9399436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human keratinocytes in culture exhibit no response when exposed to short duration, low amplitude, high frequency (900 MHz) electromagnetic fields in a reverberation chamber.
    Roux D; Girard S; Paladian F; Bonnet P; Lalléchère S; Gendraud M; Davies E; Vian A
    Bioelectromagnetics; 2011 May; 32(4):302-11. PubMed ID: 21452360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant Responses to High Frequency Electromagnetic Fields.
    Vian A; Davies E; Gendraud M; Bonnet P
    Biomed Res Int; 2016; 2016():1830262. PubMed ID: 26981524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dominant allele Aft induces a shift from flavonol to anthocyanin production in response to UV-B radiation in tomato fruit.
    Catola S; Castagna A; Santin M; Calvenzani V; Petroni K; Mazzucato A; Ranieri A
    Planta; 2017 Aug; 246(2):263-275. PubMed ID: 28516293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells.
    Nikolova T; Czyz J; Rolletschek A; Blyszczuk P; Fuchs J; Jovtchev G; Schuderer J; Kuster N; Wobus AM
    FASEB J; 2005 Oct; 19(12):1686-8. PubMed ID: 16116041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 7B-1 mutation in tomato (Solanum lycopersicum L.) confers a blue light-specific lower sensitivity to coronatine, a toxin produced by Pseudomonas syringae pv. tomato.
    Bergougnoux V; Hlavácková V; Plotzová R; Novák O; Fellner M
    J Exp Bot; 2009; 60(4):1219-30. PubMed ID: 19213807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented.
    Downie B; Gurusinghe S; Dahal P; Thacker RR; Snyder JC; Nonogaki H; Yim K; Fukanaga K; Alvarado V; Bradford KJ
    Plant Physiol; 2003 Mar; 131(3):1347-59. PubMed ID: 12644684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of exogenous glucose on carotenoid accumulation in tomato leaves.
    Mortain-Bertrand A; Stammitti L; Telef N; Colardelle P; Brouquisse R; Rolin D; Gallusci P
    Physiol Plant; 2008 Oct; 134(2):246-56. PubMed ID: 18494861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein.
    Stanković B; Vian A; Henry-Vian C; Davies E
    Planta; 2000 Dec; 212(1):60-6. PubMed ID: 11219584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum).
    Zhu M; Chen G; Zhang J; Zhang Y; Xie Q; Zhao Z; Pan Y; Hu Z
    Plant Cell Rep; 2014 Nov; 33(11):1851-63. PubMed ID: 25063324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cDNA microarray analysis of fusicoccin-induced changes in gene expression in tomato plants.
    Frick UB; Schaller A
    Planta; 2002 Nov; 216(1):83-94. PubMed ID: 12430017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and biochemical responses of fruit exocarp of tomato (Lycopersicon esculentum Mill.) mutants to natural photo-oxidative conditions.
    Torres CA; Andrews PK; Davies NM
    J Exp Bot; 2006; 57(9):1933-47. PubMed ID: 16698820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor.
    Barberini ML; Sigaut L; Huang W; Mangano S; Juarez SPD; Marzol E; Estevez J; Obertello M; Pietrasanta L; Tang W; Muschietti J
    Plant Reprod; 2018 Jun; 31(2):159-169. PubMed ID: 29236154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of tomato membrane-bound NAC transcription factors.
    Bhattacharjee P; Das R; Mandal A; Kundu P
    Plant Mol Biol; 2017 Mar; 93(4-5):511-532. PubMed ID: 28039561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gibberellins regulate the abundance of RNAs with sequence similarity to proteinase inhibitors, dioxygenases and dehydrogenases.
    Jacobsen SE; Olszewski NE
    Planta; 1996; 198(1):78-86. PubMed ID: 8580773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.