These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 18026992)
1. Are coinfections of malaria and filariasis of any epidemiological significance? Muturi EJ; Jacob BG; Kim CH; Mbogo CM; Novak RJ Parasitol Res; 2008 Jan; 102(2):175-81. PubMed ID: 18026992 [TBL] [Abstract][Full Text] [Related]
2. Vector-control synergies, between 'roll back malaria' and the Global Programme to Eliminate Lymphatic Filariasis, in the African region. Manga L Ann Trop Med Parasitol; 2002 Dec; 96 Suppl 2():S129-32. PubMed ID: 12630402 [TBL] [Abstract][Full Text] [Related]
3. Malaria and lymphatic filariasis: the case for integrated vector management. van den Berg H; Kelly-Hope LA; Lindsay SW Lancet Infect Dis; 2013 Jan; 13(1):89-94. PubMed ID: 23084831 [TBL] [Abstract][Full Text] [Related]
4. Vector-control synergies, between 'roll back malaria' and the Global Programme to Eliminate Lymphatic Filariasis, in South-east Asia. Prasittisuk C Ann Trop Med Parasitol; 2002 Dec; 96 Suppl 2():S133-7. PubMed ID: 12630409 [TBL] [Abstract][Full Text] [Related]
5. How effective is integrated vector management against malaria and lymphatic filariasis where the diseases are transmitted by the same vector? Stone CM; Lindsay SW; Chitnis N PLoS Negl Trop Dis; 2014 Dec; 8(12):e3393. PubMed ID: 25501002 [TBL] [Abstract][Full Text] [Related]
6. Urban lymphatic filariasis in the metropolis of Dar es Salaam, Tanzania. Mwakitalu ME; Malecela MN; Pedersen EM; Mosha FW; Simonsen PE Parasit Vectors; 2013 Sep; 6():286. PubMed ID: 24289718 [TBL] [Abstract][Full Text] [Related]
7. Diversity and transmission competence in lymphatic filariasis vectors in West Africa, and the implications for accelerated elimination of Anopheles-transmitted filariasis. de Souza DK; Koudou B; Kelly-Hope LA; Wilson MD; Bockarie MJ; Boakye DA Parasit Vectors; 2012 Nov; 5():259. PubMed ID: 23151383 [TBL] [Abstract][Full Text] [Related]
8. Short communication: Negative spatial association between lymphatic filariasis and malaria in West Africa. Kelly-Hope LA; Diggle PJ; Rowlingson BS; Gyapong JO; Kyelem D; Coleman M; Thomson MC; Obsomer V; Lindsay SW; Hemingway J; Molyneux DH Trop Med Int Health; 2006 Feb; 11(2):129-35. PubMed ID: 16451336 [TBL] [Abstract][Full Text] [Related]
9. Impact of untreated bednets on prevalence of Wuchereria bancrofti transmitted by Anopheles farauti in Papua New Guinea. Bockarie MJ; Tavul L; Kastens W; Michael E; Kazura JW Med Vet Entomol; 2002 Mar; 16(1):116-9. PubMed ID: 11963977 [TBL] [Abstract][Full Text] [Related]
10. Modelling co-infection with malaria and lymphatic filariasis. Slater HC; Gambhir M; Parham PE; Michael E PLoS Comput Biol; 2013; 9(6):e1003096. PubMed ID: 23785271 [TBL] [Abstract][Full Text] [Related]
11. Lymphatic filariasis, infection status in Culex quinquefasciatus and Anopheles species after six rounds of mass drug administration in Masasi District, Tanzania. Lupenza E; Gasarasi DB; Minzi OM Infect Dis Poverty; 2021 Mar; 10(1):20. PubMed ID: 33648600 [TBL] [Abstract][Full Text] [Related]
12. Potential factors influencing lymphatic filariasis transmission in "hotspot" and "control" areas in Ghana: the importance of vectors. Pi-Bansa S; Osei JHN; Frempong KK; Elhassan E; Akuoko OK; Agyemang D; Ahorlu C; Appawu MA; Koudou BG; Wilson MD; de Souza DK; Dadzie SK; Utzinger J; Boakye DA Infect Dis Poverty; 2019 Feb; 8(1):9. PubMed ID: 30717788 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of traps and lures for mosquito vectors and xenomonitoring of Wuchereria bancrofti infection in a high prevalence Samoan Village. Hapairai LK; Plichart C; Naseri T; Silva U; Tesimale L; Pemita P; Bossin HC; Burkot TR; Ritchie SA; Graves PM; Melrose W; Joseph H Parasit Vectors; 2015 May; 8():287. PubMed ID: 26016830 [TBL] [Abstract][Full Text] [Related]
14. Geospatial modelling of lymphatic filariasis and malaria co-endemicity in Nigeria. Eneanya OA; Reimer LJ; Fischer PU; Weil GJ Int Health; 2023 Sep; 15(5):566-572. PubMed ID: 37096453 [TBL] [Abstract][Full Text] [Related]
15. African regional progress and status of the programme to eliminate lymphatic filariasis: 2000-2020. Deribe K; Bakajika DK; Zoure HM; Gyapong JO; Molyneux DH; Rebollo MP Int Health; 2020 Dec; 13(Suppl 1):S22-S27. PubMed ID: 33349875 [TBL] [Abstract][Full Text] [Related]
16. Lymphatic filariasis transmission on Mafia Islands, Tanzania: Evidence from xenomonitoring in mosquito vectors. Derua YA; Rumisha SF; Batengana BM; Max DA; Stanley G; Kisinza WN; Mboera LEG PLoS Negl Trop Dis; 2017 Oct; 11(10):e0005938. PubMed ID: 28985217 [TBL] [Abstract][Full Text] [Related]
17. Health research in Papua New Guinea. Reeder JC Trends Parasitol; 2003 Jun; 19(6):241-5. PubMed ID: 12798079 [TBL] [Abstract][Full Text] [Related]
18. Quantifying filariasis and malaria control activities in relation to lymphatic filariasis elimination: a multiple intervention score map (MISM) for Malawi. Stanton MC; Mkwanda S; Mzilahowa T; Bockarie MJ; Kelly-Hope LA Trop Med Int Health; 2014 Feb; 19(2):224-35. PubMed ID: 24438053 [TBL] [Abstract][Full Text] [Related]
19. Mapping is a prerequisite for elimination of filariasis and effective targeting of filarial 'hot spots'. Chand G; Kaushal LS; Choudhari NK; Singh N Pathog Glob Health; 2016; 110(4-5):157-63. PubMed ID: 27413817 [TBL] [Abstract][Full Text] [Related]
20. Can community-based integrated vector control hasten the process of LF elimination? Sunish IP; Kalimuthu M; Kumar VA; Munirathinam A; Nagaraj J; Tyagi BK; White GB; Arunachalam N Parasitol Res; 2016 Jun; 115(6):2353-62. PubMed ID: 26969179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]