BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18027703)

  • 1. [Research on the control arithmetic for blood pump based on ventricular work].
    Xu X; Tan J; Gong Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1089-92. PubMed ID: 18027703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suction due to left ventricular assist: implications for device control and management.
    Reesink K; Dekker A; Van der Nagel T; Beghi C; Leonardi F; Botti P; De Cicco G; Lorusso R; Van der Veen F; Maessen J
    Artif Organs; 2007 Jul; 31(7):542-9. PubMed ID: 17584479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance optimization of left ventricular assistance. A computer model study.
    Platt KL; Moore TW; Barnea O; Dubin SE; Jaron D
    ASAIO J; 1993; 39(1):29-38. PubMed ID: 8439677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic controller for left ventricular assist device based on pulsatility ratio.
    Choi S; Boston JR; Antaki JF
    Artif Organs; 2007 Feb; 31(2):114-25. PubMed ID: 17298400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A blood assist index control by intraaorta pump: a control strategy for ventricular recovery.
    Gao B; Gu K; Zeng Y; Liu Y; Chang Y
    ASAIO J; 2011; 57(5):358-62. PubMed ID: 21734559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study.
    Giridharan GA; Skliar M
    Artif Organs; 2006 Apr; 30(4):301-7. PubMed ID: 16643388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow visualization techniques in a mock ventricle supported by a nonpulsatile left ventricular assist device.
    Khalil HA; Metcalfe RW; Kleis SJ; Lee EL; Gilbert NL; Kerr DT; Frazier OH; Cohn WE
    ASAIO J; 2009; 55(4):323-7. PubMed ID: 19512887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for control of an implantable rotary blood pump for heart failure patients using noninvasive measurements.
    Lim E; Alomari AH; Savkin AV; Dokos S; Fraser JF; Timms DL; Mason DG; Lovell NH
    Artif Organs; 2011 Aug; 35(8):E174-80. PubMed ID: 21843286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow study on a newly developed impeller for a left ventricular assist device.
    Hsu CH
    J Artif Organs; 2003; 6(2):92-100. PubMed ID: 14598109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time cardiac output estimation of the circulatory system under left ventricular assistance.
    Yoshizawa M; Takeda H; Miura M; Yambe T; Katahira Y; Nitta S
    IEEE Trans Biomed Eng; 1993 Mar; 40(3):266-75. PubMed ID: 8335330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and identification of an intra-aorta pump.
    Chang Y; Gao B
    ASAIO J; 2010; 56(6):504-9. PubMed ID: 21245795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weaning of rotary blood pump recipients after myocardial recovery: a computer study of changes in cardiac energetics.
    Schima H; Vollkron M; Boehm H; Röthy W; Haisjackl M; Wieselthaler G; Wolner E
    J Thorac Cardiovasc Surg; 2004 Jun; 127(6):1743-50. PubMed ID: 15173732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameter-optimized model of cardiovascular-rotary blood pump interactions.
    Lim E; Dokos S; Cloherty SL; Salamonsen RF; Mason DG; Reizes JA; Lovell NH
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):254-66. PubMed ID: 19770086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An anti-suction control for an intra-aorta pump using blood assistant index: a numerical simulation.
    Gao B; Gu K; Zeng Y; Chang Y
    Artif Organs; 2012 Mar; 36(3):275-82. PubMed ID: 21951205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical comparison of hemodynamics with atrium to aorta and ventricular apex to aorta VAD support.
    Korakianitis T; Shi Y
    ASAIO J; 2007; 53(5):537-48. PubMed ID: 17885325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a miniature implantable left ventricular assist device using CAD/CAM technology.
    Okamoto E; Hashimoto T; Mitamura Y
    J Artif Organs; 2003; 6(3):162-7. PubMed ID: 14598098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiologic-insensitive left ventricular assist predisposes right-sided circulatory failure: a pilot simulation and validation study.
    Reesink K; Dekker A; van der Nagel T; Blom H; Soemers C; Geskes G; Maessen J; van der Veen E
    Artif Organs; 2004 Oct; 28(10):933-9. PubMed ID: 15385001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques.
    Yu YC; Simaan MA; Mushi SE; Zorn NV
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.