These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18027952)

  • 1. Spin-density distribution of the carotenoid triplet state in the peridinin-chlorophyll-protein antenna. A Q-band pulse electron-nuclear double resonance and density functional theory study.
    Niklas J; Schulte T; Prakash S; van Gastel M; Hofmann E; Lubitz W
    J Am Chem Soc; 2007 Dec; 129(50):15442-3. PubMed ID: 18027952
    [No Abstract]   [Full Text] [Related]  

  • 2. Spectroscopy of the peridinin-chlorophyll-a protein: insight into light-harvesting strategy of marine algae.
    Polívka T; Hiller RG; Frank HA
    Arch Biochem Biophys; 2007 Feb; 458(2):111-20. PubMed ID: 17098207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation of spin polarization during triplet-triplet energy transfer in reconstituted peridinin-chlorophyll-protein complexes.
    Di Valentin M; Tait C; Salvadori E; Ceola S; Scheer H; Hiller RG; Carbonera D
    J Phys Chem B; 2011 Nov; 115(45):13371-80. PubMed ID: 21942385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray structures of the peridinin-chlorophyll-protein reconstituted with different chlorophylls.
    Schulte T; Hiller RG; Hofmann E
    FEBS Lett; 2010 Mar; 584(5):973-8. PubMed ID: 20102711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulse ENDOR and density functional theory on the peridinin triplet state involved in the photo-protective mechanism in the peridinin-chlorophyll a-protein from Amphidinium carterae.
    Di Valentin M; Ceola S; Agostini G; Giacometti GM; Angerhofer A; Crescenzi O; Barone V; Carbonera D
    Biochim Biophys Acta; 2008 Mar; 1777(3):295-307. PubMed ID: 18243124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the sites of chlorophyll triplet quenching in relation to the structure of LHC-II from higher plants. Evidence from EPR spectroscopy.
    Di Valentin M; Biasibetti F; Ceola S; Carbonera D
    J Phys Chem B; 2009 Oct; 113(39):13071-8. PubMed ID: 19725570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic properties of the peridinins involved in chlorophyll triplet quenching in high-salt peridinin-chlorophyll a-protein from Amphidinium carterae as revealed by optically detected magnetic resonance, pulse EPR and pulse ENDOR spectroscopies.
    Di Valentin M; Ceola S; Salvadori E; Agostini G; Giacometti GM; Carbonera D
    Biochim Biophys Acta; 2008 Oct; 1777(10):1355-63. PubMed ID: 18602887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changing the site energy of per-614 in the Peridinin-chlorophyll a-protein does not alter its capability of chlorophyll triplet quenching.
    Agostini A; Niklas J; Schulte T; Di Valentin M; Bortolus M; Hofmann E; Lubitz W; Carbonera D
    Biochim Biophys Acta Bioenerg; 2018 Aug; 1859(8):612-618. PubMed ID: 29782823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triplet-triplet energy transfer in Peridinin-Chlorophyll a-protein reconstituted with Chl a and Chl d as revealed by optically detected magnetic resonance and pulse EPR: comparison with the native PCP complex from Amphidinium carterae.
    Di Valentin M; Agostini G; Salvadori E; Ceola S; Giacometti GM; Hiller RG; Carbonera D
    Biochim Biophys Acta; 2009 Mar; 1787(3):168-75. PubMed ID: 19150328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The electronic structure of the lutein triplet state in plant light-harvesting complex II.
    Salvadori E; Di Valentin M; Kay CW; Pedone A; Barone V; Carbonera D
    Phys Chem Chem Phys; 2012 Sep; 14(35):12238-51. PubMed ID: 22864767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distance measurements in peridinin-chlorophyll a-protein by light-induced PELDOR spectroscopy. Analysis of triplet state localization.
    Di Valentin M; Dal Farra MG; Galazzo L; Albertini M; Schulte T; Hofmann E; Carbonera D
    Biochim Biophys Acta; 2016 Dec; 1857(12):1909-1916. PubMed ID: 27659505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification by time-resolved EPR of the peridinins directly involved in chlorophyll triplet quenching in the peridinin-chlorophyll a-protein from Amphidinium carterae.
    Di Valentin M; Ceola S; Salvadori E; Agostini G; Carbonera D
    Biochim Biophys Acta; 2008 Feb; 1777(2):186-95. PubMed ID: 17991454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triplet-triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from dinoflagellate Amphidinium carterae.
    Kvíčalová Z; Alster J; Hofmann E; Khoroshyy P; Litvín R; Bína D; Polívka T; Pšenčík J
    Biochim Biophys Acta; 2016 Apr; 1857(4):341-9. PubMed ID: 26801214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near edge X-ray absorption fine structure spectroscopy (NEXAFS) of pigment-protein complexes: peridinin-chlorophyll a protein (PCP) of Amphidinium carterae.
    Legall H; Stiel H; Beck M; Leupold D; Gruszecki WI; Lokstein H
    J Biochem Biophys Methods; 2007 Apr; 70(3):369-76. PubMed ID: 17011037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triplet-state conformational changes in 15-cis-spheroidene bound to the reaction center from Rhodobacter sphaeroides 2.4.1 as revealed by time-resolved EPR spectroscopy: strengthened hypothetical mechanism of triplet-energy dissipation.
    Kakitani Y; Fujii R; Koyama Y; Nagae H; Walker L; Salter B; Angerhofer A
    Biochemistry; 2006 Feb; 45(7):2053-62. PubMed ID: 16475794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotenoid triplet states associated with the long-wavelength-emitting chlorophyll forms of photosystem I in isolated thylakoid membranes.
    Santabarbara S; Carbonera D
    J Phys Chem B; 2005 Jan; 109(2):986-91. PubMed ID: 16866470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carotenoid radical cations and dications: EPR, optical, and electrochemical studies.
    Kispert LD; Konovalova T; Gao Y
    Arch Biochem Biophys; 2004 Oct; 430(1):49-60. PubMed ID: 15325911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed electron nuclear double resonance studies of carotenoid oxidation in Cu(II)-substituted MCM-41 molecular sieves.
    Lawrence J; Focsan AL; Konovalova TA; Molnar P; Deli J; Bowman MK; Kispert LD
    J Phys Chem B; 2008 May; 112(17):5449-57. PubMed ID: 18393549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae.
    Hofmann E; Wrench PM; Sharples FP; Hiller RG; Welte W; Diederichs K
    Science; 1996 Jun; 272(5269):1788-91. PubMed ID: 8650577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structure of the high-salt form of the peridinin-chlorophyll a-protein from the dinoflagellate Amphidinium carterae: modulation of the spectral properties of pigments by the protein environment.
    Schulte T; Sharples FP; Hiller RG; Hofmann E
    Biochemistry; 2009 Jun; 48(21):4466-75. PubMed ID: 19371099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.