BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 18027980)

  • 21. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD.
    Du J; Jiang H; Lin H
    Biochemistry; 2009 Apr; 48(13):2878-90. PubMed ID: 19220062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-throughput assays for sirtuin enzymes: a microfluidic mobility shift assay and a bioluminescence assay.
    Liu Y; Gerber R; Wu J; Tsuruda T; McCarter JD
    Anal Biochem; 2008 Jul; 378(1):53-9. PubMed ID: 18358225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis for nicotinamide inhibition and base exchange in Sir2 enzymes.
    Sanders BD; Zhao K; Slama JT; Marmorstein R
    Mol Cell; 2007 Feb; 25(3):463-72. PubMed ID: 17289592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli.
    Zhao K; Chai X; Marmorstein R
    J Mol Biol; 2004 Mar; 337(3):731-41. PubMed ID: 15019790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N(epsilon)-methanesulfonyl-lysine as a non-hydrolyzable functional surrogate for N(epsilon)-acetyl-lysine.
    Jamonnak N; Fatkins DG; Wei L; Zheng W
    Org Biomol Chem; 2007 Mar; 5(6):892-6. PubMed ID: 17340003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and characterization of lysine based tripeptide analogues as inhibitors of Sir2 activity.
    Chakrabarty SP; Ramapanicker R; Mishra R; Chandrasekaran S; Balaram H
    Bioorg Med Chem; 2009 Dec; 17(23):8060-72. PubMed ID: 19861237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 9-Fluorenylmethoxycarbonyl-labeled peptides as substrates in a capillary electrophoresis-based assay for sirtuin enzymes.
    Fan Y; Ludewig R; Scriba GK
    Anal Biochem; 2009 Apr; 387(2):243-8. PubMed ID: 19454228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of the catalytic mechanism of Sir2 enzyme with QM/MM approach: SN1 vs SN2?
    Liang Z; Shi T; Ouyang S; Li H; Yu K; Zhu W; Luo C; Jiang H
    J Phys Chem B; 2010 Sep; 114(36):11927-33. PubMed ID: 20726530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose.
    Tanner KG; Landry J; Sternglanz R; Denu JM
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14178-82. PubMed ID: 11106374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins).
    Trapp J; Meier R; Hongwiset D; Kassack MU; Sippl W; Jung M
    ChemMedChem; 2007 Oct; 2(10):1419-31. PubMed ID: 17628866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple N(ε)-thioacetyl-lysine-containing cyclic peptides exhibiting highly potent sirtuin inhibition.
    Huang Y; Liu J; Yan L; Zheng W
    Bioorg Med Chem Lett; 2016 Mar; 26(6):1612-1617. PubMed ID: 26874402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases.
    Khan AN; Lewis PN
    J Biol Chem; 2006 Apr; 281(17):11702-11. PubMed ID: 16520376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism-based modulator discovery for sirtuin-catalyzed deacetylation reaction.
    Zheng W
    Mini Rev Med Chem; 2013 Jan; 13(1):132-54. PubMed ID: 22876953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
    Feldman JL; Dittenhafer-Reed KE; Kudo N; Thelen JN; Ito A; Yoshida M; Denu JM
    Biochemistry; 2015 May; 54(19):3037-3050. PubMed ID: 25897714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a capillary electrophoresis-based assay of sirtuin enzymes.
    Fan Y; Ludewig R; Imhof D; Scriba GK
    Electrophoresis; 2008 Sep; 29(18):3717-23. PubMed ID: 18850641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs.
    Vaquero A; Sternglanz R; Reinberg D
    Oncogene; 2007 Aug; 26(37):5505-20. PubMed ID: 17694090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sirtuins: NAD(+)-dependent deacetylase mechanism and regulation.
    Sauve AA; Youn DY
    Curr Opin Chem Biol; 2012 Dec; 16(5-6):535-43. PubMed ID: 23102634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1.
    Napper AD; Hixon J; McDonagh T; Keavey K; Pons JF; Barker J; Yau WT; Amouzegh P; Flegg A; Hamelin E; Thomas RJ; Kates M; Jones S; Navia MA; Saunders JO; DiStefano PS; Curtis R
    J Med Chem; 2005 Dec; 48(25):8045-54. PubMed ID: 16335928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acetylation of Sirt2 by p300 attenuates its deacetylase activity.
    Han Y; Jin YH; Kim YJ; Kang BY; Choi HJ; Kim DW; Yeo CY; Lee KY
    Biochem Biophys Res Commun; 2008 Oct; 375(4):576-80. PubMed ID: 18722353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subtype selective substrates for histone deacetylases.
    Heltweg B; Dequiedt F; Marshall BL; Brauch C; Yoshida M; Nishino N; Verdin E; Jung M
    J Med Chem; 2004 Oct; 47(21):5235-43. PubMed ID: 15456267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.