BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 18027982)

  • 1. Multiple roles of arginine 181 in binding and catalysis in the NAD-malic enzyme from Ascaris suum.
    Karsten WE; Cook PF
    Biochemistry; 2007 Dec; 46(50):14578-88. PubMed ID: 18027982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of residues in the adenosine binding site of NAD of the Ascaris suum malic enzyme.
    Aktas DF; Cook PF
    Biochim Biophys Acta; 2008 Dec; 1784(12):2059-64. PubMed ID: 18725329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme.
    Karsten WE; Liu D; Rao GS; Harris BG; Cook PF
    Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction.
    Aktas DF; Cook PF
    Biochemistry; 2008 Feb; 47(8):2539-46. PubMed ID: 18215074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascaris suum NAD-malic enzyme is activated by L-malate and fumarate binding to separate allosteric sites.
    Karsten WE; Pais JE; Rao GS; Harris BG; Cook PF
    Biochemistry; 2003 Aug; 42(32):9712-21. PubMed ID: 12911313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lysine 199 is the general acid in the NAD-malic enzyme reaction.
    Liu D; Karsten WE; Cook PF
    Biochemistry; 2000 Oct; 39(39):11955-60. PubMed ID: 11009609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme.
    Karsten WE; Hwang CC; Cook PF
    Biochemistry; 1999 Apr; 38(14):4398-402. PubMed ID: 10194359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies.
    Kiick DM; Harris BG; Cook PF
    Biochemistry; 1986 Jan; 25(1):227-36. PubMed ID: 3513825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tartrate dehydrogenase catalyzes the stepwise oxidative decarboxylation of D-malate with both NAD and thio-NAD.
    Karsten WE; Tipton PA; Cook PF
    Biochemistry; 2002 Oct; 41(40):12193-9. PubMed ID: 12356321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of a thiol at the active site of the Ascaris suum NAD-malic enzyme results in changes in the rate-determining steps for oxidative decarboxylation of L-malate.
    Gavva SR; Harris BG; Weiss PM; Cook PF
    Biochemistry; 1991 Jun; 30(23):5764-9. PubMed ID: 2043616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal ion activator effects on intrinsic isotope effects for hydride transfer from decarboxylation in the reaction catalyzed by the NAD-malic enzyme from Ascaris suum.
    Karsten WE; Gavva SR; Park SH; Cook PF
    Biochemistry; 1995 Mar; 34(10):3253-60. PubMed ID: 7880820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic studies on Ascaris suum NAD-malic enzyme bound to reduced cofactor and identification of an effector site.
    Rao GS; Coleman DE; Karsten WE; Cook PF; Harris BG
    J Biol Chem; 2003 Sep; 278(39):38051-8. PubMed ID: 12853453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the divalent metal ion in the NAD:malic enzyme reaction: an ESEEM determination of the ground state conformation of malate in the E:Mn:malate complex.
    Tipton PA; Quinn TP; Peisach J; Cook PF
    Protein Sci; 1996 Aug; 5(8):1648-54. PubMed ID: 8844853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of activation of the NAD-malic enzyme from Ascaris suum by fumarate.
    Lai CJ; Harris BG; Cook PF
    Arch Biochem Biophys; 1992 Dec; 299(2):214-9. PubMed ID: 1444459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction.
    Weiss PM; Gavva SR; Harris BG; Urbauer JL; Cleland WW; Cook PF
    Biochemistry; 1991 Jun; 30(23):5755-63. PubMed ID: 2043615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the active site topography of the NAD-malic enzyme via alanine-scanning site-directed mutagenesis.
    Karsten WE; Chooback L; Liu D; Hwang CC; Lynch C; Cook PF
    Biochemistry; 1999 Aug; 38(32):10527-32. PubMed ID: 10441149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase.
    Taillefer M; Rydzak T; Levin DB; Oresnik IJ; Sparling R
    Appl Environ Microbiol; 2015 Apr; 81(7):2423-32. PubMed ID: 25616802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stepwise versus concerted oxidative decarboxylation catalyzed by malic enzyme: a reinvestigation.
    Karsten WE; Cook PF
    Biochemistry; 1994 Mar; 33(8):2096-103. PubMed ID: 8117666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate activation by malate induced by oxalate in the Ascaris suum NAD-malic enzyme reaction.
    Park SH; Harris BG; Cook PF
    Biochemistry; 1989 Jul; 28(15):6334-40. PubMed ID: 2790001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification, properties, and kinetic studies of cytoplasmic malate dehydrogenase from Taenia solium cysticerci.
    Plancarte A; Nava G; Mendoza-Hernández G
    Parasitol Res; 2009 Jul; 105(1):175-83. PubMed ID: 19277715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.