These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 18028305)

  • 1. How many symbionts are provided by mothers, acquired by offspring, and needed for successful vertical transmission in an obligate insect-bacterium mutualism?
    Hosokawa T; Kikuchi Y; Fukatsu T
    Mol Ecol; 2007 Dec; 16(24):5316-25. PubMed ID: 18028305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The making of symbiont capsule in the plataspid stinkbug Megacopta punctatissima.
    Hosokawa T; Kikuchi Y; Meng XY; Fukatsu T
    FEMS Microbiol Ecol; 2005 Nov; 54(3):471-7. PubMed ID: 16332344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria.
    Hosokawa T; Kikuchi Y; Nikoh N; Shimada M; Fukatsu T
    PLoS Biol; 2006 Oct; 4(10):e337. PubMed ID: 17032065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symbiont acquisition alters behaviour of stinkbug nymphs.
    Hosokawa T; Kikuchi Y; Shimada M; Fukatsu T
    Biol Lett; 2008 Feb; 4(1):45-8. PubMed ID: 18055411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Host range of naturally and artificially evolved symbiotic bacteria for a specific host insect.
    Sugiyama R; Moriyama M; Koga R; Fukatsu T
    mBio; 2024 Sep; 15(9):e0134224. PubMed ID: 39082826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima.
    Fukatsu T; Hosokawa T
    Appl Environ Microbiol; 2002 Jan; 68(1):389-96. PubMed ID: 11772649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria.
    Mira A; Moran NA
    Microb Ecol; 2002 Aug; 44(2):137-43. PubMed ID: 12087426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse strategies for vertical symbiont transmission among subsocial stinkbugs.
    Hosokawa T; Hironaka M; Inadomi K; Mukai H; Nikoh N; Fukatsu T
    PLoS One; 2013; 8(5):e65081. PubMed ID: 23741463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Female-specific specialization of a posterior end region of the midgut symbiotic organ in Plautia splendens and allied stinkbugs.
    Hayashi T; Hosokawa T; Meng XY; Koga R; Fukatsu T
    Appl Environ Microbiol; 2015 Apr; 81(7):2603-11. PubMed ID: 25636847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization and transmission route of Coriobacterium glomerans, the endosymbiont of pyrrhocorid bugs.
    Kaltenpoth M; Winter SA; Kleinhammer A
    FEMS Microbiol Ecol; 2009 Sep; 69(3):373-83. PubMed ID: 19583787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host's guardian protein counters degenerative symbiont evolution.
    Koga R; Tanahashi M; Nikoh N; Hosokawa T; Meng XY; Moriyama M; Fukatsu T
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs.
    Kikuchi Y; Hosokawa T; Nikoh N; Meng XY; Kamagata Y; Fukatsu T
    BMC Biol; 2009 Jan; 7():2. PubMed ID: 19146674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symbiotic factors in Burkholderia essential for establishing an association with the bean bug, Riptortus pedestris.
    Kim JK; Lee BL
    Arch Insect Biochem Physiol; 2015 Jan; 88(1):4-17. PubMed ID: 25521625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization and localization of the obligate endosymbiotic bacterium in the birch catkin bug Kleidocerys resedae (Heteroptera: Lygaeidae, Ischnorhynchinae).
    Küchler SM; Dettner K; Kehl S
    FEMS Microbiol Ecol; 2010 Aug; 73(2):408-18. PubMed ID: 20500529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symbiont-supplemented maternal investment underpinning host's ecological adaptation.
    Kaiwa N; Hosokawa T; Nikoh N; Tanahashi M; Moriyama M; Meng XY; Maeda T; Yamaguchi K; Shigenobu S; Ito M; Fukatsu T
    Curr Biol; 2014 Oct; 24(20):2465-70. PubMed ID: 25264255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live imaging of symbiosis: spatiotemporal infection dynamics of a GFP-labelled Burkholderia symbiont in the bean bug Riptortus pedestris.
    Kikuchi Y; Fukatsu T
    Mol Ecol; 2014 Mar; 23(6):1445-1456. PubMed ID: 24103110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gut microbiota in nymph and adults of the giant mesquite bug (Thasus neocalifornicus) (Heteroptera: Coreidae) is dominated by Burkholderia acquired de novo every generation.
    Olivier-Espejel S; Sabree ZL; Noge K; Becerra JX
    Environ Entomol; 2011 Oct; 40(5):1102-10. PubMed ID: 22251722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation.
    Kikuchi Y; Hosokawa T; Fukatsu T
    Appl Environ Microbiol; 2007 Jul; 73(13):4308-16. PubMed ID: 17483286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis.
    Stewart FJ; Young CR; Cavanaugh CM
    Mol Biol Evol; 2008 Apr; 25(4):673-87. PubMed ID: 18192696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Common Leaf-Footed Bug Pests Depends on the Presence and Identity of Their Environmentally Acquired Symbionts.
    Hunter MS; Umanzor EF; Kelly SE; Whitaker SM; Ravenscraft A
    Appl Environ Microbiol; 2022 Mar; 88(5):e0177821. PubMed ID: 34986009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.