These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 18028317)

  • 1. Mutations that alter the regulation of the chb operon of Escherichia coli allow utilization of cellobiose.
    Kachroo AH; Kancherla AK; Singh NS; Varshney U; Mahadevan S
    Mol Microbiol; 2007 Dec; 66(6):1382-95. PubMed ID: 18028317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP.
    Plumbridge J; Pellegrini O
    Mol Microbiol; 2004 Apr; 52(2):437-49. PubMed ID: 15066032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of the evolution of cellobiose utilization in Escherichia coli and Shigella sonnei.
    Joseph AM; Sonowal R; Mahadevan S
    Arch Microbiol; 2017 Mar; 199(2):247-257. PubMed ID: 27695910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins.
    Yeo WS; Lee JH; Lee KC; Roe JH
    Mol Microbiol; 2006 Jul; 61(1):206-18. PubMed ID: 16824106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different regions of Mlc and NagC, homologous transcriptional repressors controlling expression of the glucose and N-acetylglucosamine phosphotransferase systems in Escherichia coli, are required for inducer signal recognition.
    Pennetier C; Domínguez-Ramírez L; Plumbridge J
    Mol Microbiol; 2008 Jan; 67(2):364-77. PubMed ID: 18067539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli.
    Izu H; Adachi O; Yamada M
    J Mol Biol; 1997 Apr; 267(4):778-93. PubMed ID: 9135111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chbG gene of the chitobiose (chb) operon of Escherichia coli encodes a chitooligosaccharide deacetylase.
    Verma SC; Mahadevan S
    J Bacteriol; 2012 Sep; 194(18):4959-71. PubMed ID: 22797760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Escherichia coli for efficient cellobiose utilization.
    Vinuselvi P; Lee SK
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):125-32. PubMed ID: 21713510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global gene expression analysis revealed an unsuspected deo operon under the control of molybdate sensor, ModE protein, in Escherichia coli.
    Tao H; Hasona A; Do PM; Ingram LO; Shanmugam KT
    Arch Microbiol; 2005 Dec; 184(4):225-33. PubMed ID: 16205910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon.
    Desai SK; Nandimath K; Mahadevan S
    Arch Microbiol; 2010 Oct; 192(10):821-33. PubMed ID: 20697693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Functions and Regulation of Cryptic Cellobiose Operons in Escherichia coli.
    Parisutham V; Lee SK
    PLoS One; 2015; 10(6):e0131928. PubMed ID: 26121029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wild-type Escherichia coli grows on the chitin disaccharide, N,N'-diacetylchitobiose, by expressing the cel operon.
    Keyhani NO; Roseman S
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14367-71. PubMed ID: 9405618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12.
    Parker LL; Hall BG
    Genetics; 1990 Mar; 124(3):455-71. PubMed ID: 2179047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility.
    Partridge JD; Bodenmiller DM; Humphrys MS; Spiro S
    Mol Microbiol; 2009 Aug; 73(4):680-94. PubMed ID: 19656291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the opposing roles of H-NS and TraJ in transcriptional regulation of the F-plasmid tra operon.
    Will WR; Frost LS
    J Bacteriol; 2006 Jan; 188(2):507-14. PubMed ID: 16385041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered oligomerization properties of N316 mutants of Escherichia coli TyrR.
    Koyanagi T; Katayama T; Suzuki H; Kumagai H
    J Bacteriol; 2008 Dec; 190(24):8238-43. PubMed ID: 18931124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of activation of the cryptic cel operon of Escherichia coli K12.
    Parker LL; Hall BG
    Genetics; 1990 Mar; 124(3):473-82. PubMed ID: 2179048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional and translational regulation of the marRAB multiple antibiotic resistance operon in Escherichia coli.
    Martin RG; Rosner JL
    Mol Microbiol; 2004 Jul; 53(1):183-91. PubMed ID: 15225313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcript analysis reveals an extended regulon and the importance of protein-protein co-operativity for the Escherichia coli methionine repressor.
    Marincs F; Manfield IW; Stead JA; McDowall KJ; Stockley PG
    Biochem J; 2006 Jun; 396(2):227-34. PubMed ID: 16515535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Features of functioning of the promoter of microcin C51 promoter under various conditions of Escherichia coli cell growth].
    Veselovskiĭ AM; Fomenko DE; Metlitskaia AZ; Lipasova VA; Khmel' IA
    Genetika; 2001 Aug; 37(8):1055-62. PubMed ID: 11642104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.