These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 18028397)

  • 1. Improved method for the PCR-based gene disruption in Saccharomyces cerevisiae.
    Koyama H; Sumiya E; Ito T; Sekimizu K
    FEMS Yeast Res; 2008 Mar; 8(2):193-4. PubMed ID: 18028397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional ligation of long-flanking homology regions to selection cassettes for efficient targeted gene-disruption in Candida albicans.
    Taneja V; Paul S; Ganesan K
    FEMS Yeast Res; 2004 Sep; 4(8):841-7. PubMed ID: 15450191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene disruption in Aspergillus fumigatus using a PCR-based strategy and in vivo recombination in yeast.
    Malavazi I; Goldman GH
    Methods Mol Biol; 2012; 845():99-118. PubMed ID: 22328370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient gene-disruption method in Cryptococcus neoformans by double-joint PCR with NAT-split markers.
    Kim MS; Kim SY; Yoon JK; Lee YW; Bahn YS
    Biochem Biophys Res Commun; 2009 Dec; 390(3):983-8. PubMed ID: 19852932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marker-disruptive gene integration and URA3 recycling for multiple gene manipulation in Saccharomyces cerevisiae.
    Kaneko S; Tanaka T; Noda H; Fukuda H; Akada R; Kondo A
    Appl Microbiol Biotechnol; 2009 Jun; 83(4):783-9. PubMed ID: 19455322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption and phenotypic analysis of six novel genes from chromosome IV of Saccharomyces cerevisiae reveal YDL060w as an essential gene for vegetative growth.
    Casalone E; Barberio C; Cavalieri D; Ceccarelli I; Riparbelli M; Ugolini S; Polsinelli M
    Yeast; 1999 Nov; 15(15):1691-701. PubMed ID: 10572265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive and negative selection LYS5MX gene replacement cassettes for use in Saccharomyces cerevisiae.
    Ito-Harashima S; McCusker JH
    Yeast; 2004 Jan; 21(1):53-61. PubMed ID: 14745782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved gene disruption method for Torulaspora delbrueckii.
    Pacheco A; Almeida MJ; Sousa MJ
    FEMS Yeast Res; 2009 Feb; 9(1):158-60. PubMed ID: 19016885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCR-based methods facilitate targeted gene manipulations and cloning procedures.
    Wendland J
    Curr Genet; 2003 Nov; 44(3):115-23. PubMed ID: 12928752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCR-mediated one-step deletion of targeted chromosomal regions in haploid Saccharomyces cerevisiae.
    Sugiyama M; Nakazawa T; Murakami K; Sumiya T; Nakamura A; Kaneko Y; Nishizawa M; Harashima S
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):545-53. PubMed ID: 18677473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of in vivo targeted nucleotide exchange by nonspecific carrier DNA.
    Maguire KK; Kmiec EB
    Methods Mol Biol; 2004; 262():209-19. PubMed ID: 14769964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmids with E2 epitope tags: tagging modules for N- and C-terminal PCR-based gene targeting in both budding and fission yeast, and inducible expression vectors for fission yeast.
    Tamm T
    Yeast; 2009 Jan; 26(1):55-66. PubMed ID: 19180640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A one-step PCR-based method for rapid and efficient site-directed fragment deletion, insertion, and substitution mutagenesis.
    Qi D; Scholthof KB
    J Virol Methods; 2008 Apr; 149(1):85-90. PubMed ID: 18314204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutagenesis of longer inserts by the ligation of two PCR fragments amplified with a mutation primer.
    Kato Y; Arakawa N; Masuishi Y; Kawasaki H; Hirano H
    J Biosci Bioeng; 2009 Jan; 107(1):95-7. PubMed ID: 19147118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted gene disruption in Cryptococcus neoformans using double-joint PCR with split dominant selectable markers.
    Kim MS; Kim SY; Jung KW; Bahn YS
    Methods Mol Biol; 2012; 845():67-84. PubMed ID: 22328368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A plasmid collection for PCR-based gene targeting in the filamentous ascomycete Ashbya gossypii.
    Kaufmann A
    Fungal Genet Biol; 2009 Aug; 46(8):595-603. PubMed ID: 19460453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The size and ratio of homologous sequence to non-homologous sequence in gene disruption cassette influences the gene targeting efficiency in Beauveria bassiana.
    Ma JC; Zhou Q; Zhou YH; Liao XG; Zhang YJ; Jin D; Pei Y
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):891-8. PubMed ID: 19148636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid amplification of genomic DNA sequences tagged by insertional mutagenesis.
    Celerin M; Chun KT
    Methods Mol Biol; 2002; 192():325-35. PubMed ID: 12494664
    [No Abstract]   [Full Text] [Related]  

  • 19. New pFA-cassettes for PCR-based gene manipulation in Candida albicans.
    Schaub Y; Dünkler A; Walther A; Wendland J
    J Basic Microbiol; 2006; 46(5):416-29. PubMed ID: 17009297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCR- and ligation-mediated synthesis of marker cassettes with long flanking homology regions for gene disruption in Saccharomyces cerevisiae.
    Nikawa J; Kawabata M
    Nucleic Acids Res; 1998 Feb; 26(3):860-1. PubMed ID: 9443982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.