These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 18028424)
1. Effect of annealing time of an ice crystal on the activity of type III antifreeze protein. Takamichi M; Nishimiya Y; Miura A; Tsuda S FEBS J; 2007 Dec; 274(24):6469-76. PubMed ID: 18028424 [TBL] [Abstract][Full Text] [Related]
2. Modified Langmuir isotherm for a two-domain adsorbate: derivation and application to antifreeze proteins. Can O; Holland NB J Colloid Interface Sci; 2009 Jan; 329(1):24-30. PubMed ID: 18945440 [TBL] [Abstract][Full Text] [Related]
3. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins. Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359 [TBL] [Abstract][Full Text] [Related]
4. Co-operative effect of the isoforms of type III antifreeze protein expressed in Notched-fin eelpout, Zoarces elongatus Kner. Nishimiya Y; Sato R; Takamichi M; Miura A; Tsuda S FEBS J; 2005 Jan; 272(2):482-92. PubMed ID: 15654886 [TBL] [Abstract][Full Text] [Related]
5. Understanding the mechanism of ice binding by type III antifreeze proteins. Antson AA; Smith DJ; Roper DI; Lewis S; Caves LS; Verma CS; Buckley SL; Lillford PJ; Hubbard RE J Mol Biol; 2001 Jan; 305(4):875-89. PubMed ID: 11162099 [TBL] [Abstract][Full Text] [Related]
6. The mechanism by which fish antifreeze proteins cause thermal hysteresis. Kristiansen E; Zachariassen KE Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290 [TBL] [Abstract][Full Text] [Related]
7. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. DeLuca CI; Davies PL; Ye Q; Jia Z J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928 [TBL] [Abstract][Full Text] [Related]
8. Aggregation of antifreeze protein and impact on antifreeze activity. Du N; Liu XY; Hew CL J Phys Chem B; 2006 Oct; 110(41):20562-7. PubMed ID: 17034244 [TBL] [Abstract][Full Text] [Related]
9. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Yu SO; Brown A; Middleton AJ; Tomczak MM; Walker VK; Davies PL Cryobiology; 2010 Dec; 61(3):327-34. PubMed ID: 20977900 [TBL] [Abstract][Full Text] [Related]
10. Effects of cooling rate, annealing time and biological antifreeze concentration on thermal hysteresis reading. Kubota N Cryobiology; 2011 Dec; 63(3):198-209. PubMed ID: 21884689 [TBL] [Abstract][Full Text] [Related]
11. Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Garnham CP; Natarajan A; Middleton AJ; Kuiper MJ; Braslavsky I; Davies PL Biochemistry; 2010 Oct; 49(42):9063-71. PubMed ID: 20853841 [TBL] [Abstract][Full Text] [Related]
12. Solid-state NMR on a type III antifreeze protein in the presence of ice. Siemer AB; McDermott AE J Am Chem Soc; 2008 Dec; 130(51):17394-9. PubMed ID: 19053456 [TBL] [Abstract][Full Text] [Related]
13. Fully active QAE isoform confers thermal hysteresis activity on a defective SP isoform of type III antifreeze protein. Takamichi M; Nishimiya Y; Miura A; Tsuda S FEBS J; 2009 Mar; 276(5):1471-9. PubMed ID: 19187223 [TBL] [Abstract][Full Text] [Related]
14. New simulation model of multicomponent crystal growth and inhibition. Wathen B; Kuiper M; Walker V; Jia Z Chemistry; 2004 Apr; 10(7):1598-605. PubMed ID: 15054746 [TBL] [Abstract][Full Text] [Related]
15. Hypothermic preservation effect on mammalian cells of type III antifreeze proteins from notched-fin eelpout. Hirano Y; Nishimiya Y; Matsumoto S; Matsushita M; Todo S; Miura A; Komatsu Y; Tsuda S Cryobiology; 2008 Aug; 57(1):46-51. PubMed ID: 18603237 [TBL] [Abstract][Full Text] [Related]
16. Neutron structure of type-III antifreeze protein allows the reconstruction of AFP-ice interface. Howard EI; Blakeley MP; Haertlein M; Petit-Haertlein I; Mitschler A; Fisher SJ; Cousido-Siah A; Salvay AG; Popov A; Muller-Dieckmann C; Petrova T; Podjarny A J Mol Recognit; 2011; 24(4):724-32. PubMed ID: 21472814 [TBL] [Abstract][Full Text] [Related]
17. A new model for simulating 3-d crystal growth and its application to the study of antifreeze proteins. Wathen B; Kuiper M; Walker V; Jia Z J Am Chem Soc; 2003 Jan; 125(3):729-37. PubMed ID: 12526672 [TBL] [Abstract][Full Text] [Related]
18. Activity of short segments of Type I antifreeze protein. Kun H; Mastai Y Biopolymers; 2007; 88(6):807-14. PubMed ID: 17868093 [TBL] [Abstract][Full Text] [Related]
19. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. Xiao N; Suzuki K; Nishimiya Y; Kondo H; Miura A; Tsuda S; Hoshino T FEBS J; 2010 Jan; 277(2):394-403. PubMed ID: 20030710 [TBL] [Abstract][Full Text] [Related]