BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 18028765)

  • 21. Reduced survivin expression and tumor cell survival during chronic hypoxia and further cytotoxic enhancement by the cyclooxygenase-2 inhibitor celecoxib.
    Kardosh A; Soriano N; Pyrko P; Liu YT; Jabbour M; Hofman FM; Schönthal AH
    J Biomed Sci; 2007 Sep; 14(5):647-62. PubMed ID: 17440835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of ionizing radiation-induced G2 arrest by cyclooxygenase-2 and its inhibitor celecoxib.
    Jun HJ; Kim YM; Park SY; Park JS; Lee EJ; Choi SA; Pyo H
    Int J Radiat Oncol Biol Phys; 2009 Sep; 75(1):225-34. PubMed ID: 19695440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Celecoxib potentiates the anticancer effect of cisplatin on vulvar cancer cells independently of cyclooxygenase.
    Kim SH; Kim SH; Song YC; Song YS
    Ann N Y Acad Sci; 2009 Aug; 1171():635-41. PubMed ID: 19723114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tumor necrosis factor-alpha induces MMP-9 expression via p42/p44 MAPK, JNK, and nuclear factor-kappaB in A549 cells.
    Lin CC; Tseng HW; Hsieh HL; Lee CW; Wu CY; Cheng CY; Yang CM
    Toxicol Appl Pharmacol; 2008 Jun; 229(3):386-98. PubMed ID: 18336852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1.
    Reuter S; Schnekenburger M; Cristofanon S; Buck I; Teiten MH; Daubeuf S; Eifes S; Dicato M; Aggarwal BB; Visvikis A; Diederich M
    Biochem Pharmacol; 2009 Feb; 77(3):397-411. PubMed ID: 18996094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. siRNA targeting HIF-1alpha induces apoptosis of pancreatic cancer cells through NF-kappaB-independent and -dependent pathways under hypoxic conditions.
    Chen C; Yu Z
    Anticancer Res; 2009 Apr; 29(4):1367-72. PubMed ID: 19414389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro and in vivo inhibitory effect evaluation of cyclooxygenase-2 inhibitors, antisense cyclooxygenase-2 cDNA, and their combination on the growth of human bladder cancer cells.
    Qin J; Yuan J; Li L; Liu H; Qin R; Qin W; Chen B; Wang H; Wu K
    Biomed Pharmacother; 2009 Mar; 63(3):241-8. PubMed ID: 18617357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preventing chemoresistance of human breast cancer cell line, MCF-7 with celecoxib.
    Chen C; Shen HL; Yang J; Chen QY; Xu WL
    J Cancer Res Clin Oncol; 2011 Jan; 137(1):9-17. PubMed ID: 20229271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective inhibition of cyclooxygenase-2 suppresses the growth of pancreatic cancer cells in vitro and in vivo.
    Xu XF; Xie CG; Wang XP; Liu J; Yu YC; Hu HL; Guo CY
    Tohoku J Exp Med; 2008 Jun; 215(2):149-57. PubMed ID: 18577844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous targeting of the epidermal growth factor receptor and cyclooxygenase-2 pathways for pancreatic cancer therapy.
    Ali S; El-Rayes BF; Sarkar FH; Philip PA
    Mol Cancer Ther; 2005 Dec; 4(12):1943-51. PubMed ID: 16373709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Claudin-1 expression is induced by tumor necrosis factor-alpha in human pancreatic cancer cells.
    Kondo J; Sato F; Kusumi T; Liu Y; Motonari O; Sato T; Kijima H
    Int J Mol Med; 2008 Nov; 22(5):645-9. PubMed ID: 18949385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The anti-inflammatory effect of celecoxib does not prevent liver fibrosis in bile duct-ligated rats.
    Yu J; Hui AY; Chu ES; Go MY; Cheung KF; Wu CW; Chan HL; Sung JJ
    Liver Int; 2009 Jan; 29(1):25-36. PubMed ID: 18435714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histamine H1-receptor antagonists inhibit nuclear factor-kappaB and activator protein-1 activities via H1-receptor-dependent and -independent mechanisms.
    Roumestan C; Henriquet C; Gougat C; Michel A; Bichon F; Portet K; Jaffuel D; Mathieu M
    Clin Exp Allergy; 2008 Jun; 38(6):947-56. PubMed ID: 18498541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chronic treatment with celecoxib reverses chronic unpredictable stress-induced depressive-like behavior via reducing cyclooxygenase-2 expression in rat brain.
    Guo JY; Li CY; Ruan YP; Sun M; Qi XL; Zhao BS; Luo F
    Eur J Pharmacol; 2009 Jun; 612(1-3):54-60. PubMed ID: 19356723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TRAIL-mediated apoptosis in malignant glioma cells is augmented by celecoxib through proteasomal degradation of survivin.
    Gaiser T; Becker MR; Habel A; Reuss DE; Ehemann V; Rami A; Siegelin MD
    Neurosci Lett; 2008 Sep; 442(2):109-13. PubMed ID: 18634847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Berberine modifies cysteine 179 of IkappaBalpha kinase, suppresses nuclear factor-kappaB-regulated antiapoptotic gene products, and potentiates apoptosis.
    Pandey MK; Sung B; Kunnumakkara AB; Sethi G; Chaturvedi MM; Aggarwal BB
    Cancer Res; 2008 Jul; 68(13):5370-9. PubMed ID: 18593939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergistic inhibition effect of tumor growth by using celecoxib in combination with oxaliplatin.
    Zhao S; Cai J; Bian H; Gui L; Zhao F
    Cancer Invest; 2009 Jul; 27(6):636-40. PubMed ID: 19387877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imatinib-resistant K562 cells are more sensitive to celecoxib, a selective COX-2 inhibitor: role of COX-2 and MDR-1.
    Arunasree KM; Roy KR; Anilkumar K; Aparna A; Reddy GV; Reddanna P
    Leuk Res; 2008 Jun; 32(6):855-64. PubMed ID: 18083230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene expression analysis proposes alternative pathways for the mechanism by which celecoxib selectively inhibits the growth of transformed but not normal enterocytes.
    Sagiv E; Rozovski U; Kazanov D; Liberman E; Arber N
    Clin Cancer Res; 2007 Nov; 13(22 Pt 1):6807-15. PubMed ID: 18006783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Celecoxib suppresses proliferation and metastasis of pancreatic cancer cells by down-regulating STAT3 / NF-kB and L1CAM activities.
    Zuo C; Hong Y; Qiu X; Yang D; Liu N; Sheng X; Zhou K; Tang B; Xiong S; Ma M; Liu Z
    Pancreatology; 2018 Apr; 18(3):328-333. PubMed ID: 29525378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.