These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 18028935)

  • 1. Morphological changes in the internal structure of the articular eminence of the temporal bone during growth from deciduous to early mixed dentition.
    Ichikawa J; Hara T; Tamatsu Y; Ide Y
    J Biomech; 2007; 40(16):3541-7. PubMed ID: 18028935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the development of the articular part of the temporal bone with special reference to the postglenoid process.
    Itoh I; Su MJ; Saitoh H; Tamatsu Y; Abe T; Hori H; Fujimura A; Nozaka Y
    Bull Tokyo Dent Coll; 1995 Aug; 36(3):145-58. PubMed ID: 8689754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The growth of articular eminence height during craniofacial growth period.
    Katsavrias EG; Dibbets JM
    Cranio; 2001 Jan; 19(1):13-20. PubMed ID: 11842835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in articular eminence inclination during the craniofacial growth period.
    Katsavrias EG
    Angle Orthod; 2002 Jun; 72(3):258-64. PubMed ID: 12071610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal structure of the temporomandibular joint and the circumferential bone: comparison between dentulous and edentulous specimens.
    Kawashima T; Abe S; Okada M; Kawada E; Saitoh C; Ide Y
    Bull Tokyo Dent Coll; 1997 May; 38(2):87-93. PubMed ID: 9566125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the fabric and compliance tensors of cancellous bone due to trabecular surface remodeling, predicted by a digital image-based model.
    Tsubota K; Adachi T
    Comput Methods Biomech Biomed Engin; 2004 Aug; 7(4):187-92. PubMed ID: 15512762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Condylar guidance: correlation between articular morphology and panoramic radiographic images in dry human skulls.
    Gilboa I; Cardash HS; Kaffe I; Gross MD
    J Prosthet Dent; 2008 Jun; 99(6):477-82. PubMed ID: 18514670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the internal structure of the infantile zygomatic bone.
    Tamatsu Y; Hongo T; Nakajima K; Kawase M; Ide Y
    Dent Jpn (Tokyo); 1990; 27(1):5-9. PubMed ID: 2099291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A radiolucency in the articular eminence of the temporal bone: an air bubble?].
    Koudstaal MJ; van der Wal KG
    Ned Tijdschr Tandheelkd; 2003 May; 110(5):193-4. PubMed ID: 12784515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eminence development of the postnatal human temporomandibular joint.
    Nickel JC; McLachlan KR; Smith DM
    J Dent Res; 1988 Jun; 67(6):896-902. PubMed ID: 3170901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of stresses in the maxillary and mandibular dental arches and TMJ articular discs during clenching into maximum intercuspation, anterior and unilateral posterior occlusion.
    Pileicikiene G; Surna A; Barauskas R; Surna R; Basevicius A
    Stomatologija; 2007; 9(4):121-8. PubMed ID: 18303277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dental application of novel finite element analysis software for three-dimensional finite element modeling of a dentulous mandible from its computed tomography images.
    Nakamura K; Tajima K; Chen KK; Nagamatsu Y; Kakigawa H; Masumi SI
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1312-8. PubMed ID: 24077258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress distribution in the temporomandibular joint after mandibular protraction: a 3-dimensional finite element method study. Part 1.
    Gupta A; Kohli VS; Hazarey PV; Kharbanda OP; Gunjal A
    Am J Orthod Dentofacial Orthop; 2009 Jun; 135(6):737-48. PubMed ID: 19524833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on stress distribution of the condyle].
    Hu M; Zhou J; Hong M
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1996 Jul; 31(4):214-6. PubMed ID: 9592271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Clinical forms of muscular imbalance in the mixed dentition. Morphogenetic consequences].
    Mauhourat S; Raberin M; Pernier C
    Orthod Fr; 2001; 72(1-2):83-104. PubMed ID: 11392240
    [No Abstract]   [Full Text] [Related]  

  • 18. Occlusal load distribution through the cortical and trabecular bone of the human mid-facial skeleton in natural dentition: a three-dimensional finite element study.
    Janovic A; Saveljic I; Vukicevic A; Nikolic D; Rakocevic Z; Jovicic G; Filipovic N; Djuric M
    Ann Anat; 2015 Jan; 197():16-23. PubMed ID: 25458179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone.
    Teo JC; Si-Hoe KM; Keh JE; Teoh SH
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):235-44. PubMed ID: 16356612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental validation of a finite element model of the temporomandibular joint.
    Devocht JW; Goel VK; Zeitler DL; Lew D
    J Oral Maxillofac Surg; 2001 Jul; 59(7):775-8. PubMed ID: 11429739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.