These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18028943)

  • 1. Pathways and intermediates of amyloid fibril formation.
    Pellarin R; Guarnera E; Caflisch A
    J Mol Biol; 2007 Dec; 374(4):917-24. PubMed ID: 18028943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of kinetic pathways in amyloid fibril formation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Sep; 131(11):111102. PubMed ID: 19778093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpreting the aggregation kinetics of amyloid peptides.
    Pellarin R; Caflisch A
    J Mol Biol; 2006 Jul; 360(4):882-92. PubMed ID: 16797587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion.
    Kumar S; Mohanty SK; Udgaonkar JB
    J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of beta-sheet propensity on peptide aggregation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Apr; 130(14):145103. PubMed ID: 19368476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic pathways to peptide aggregation on surfaces: the effects of β-sheet propensity and surface attraction.
    Morriss-Andrews A; Shea JE
    J Chem Phys; 2012 Feb; 136(6):065103. PubMed ID: 22360223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly dynamics of two-beta sheets revealed by molecular dynamics simulations.
    Xu W; Ping J; Li W; Mu Y
    J Chem Phys; 2009 Apr; 130(16):164709. PubMed ID: 19405618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural diversity of the soluble trimers of the human amylin(20-29) peptide revealed by molecular dynamics simulations.
    Mo Y; Lu Y; Wei G; Derreumaux P
    J Chem Phys; 2009 Mar; 130(12):125101. PubMed ID: 19334894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing amyloid fibril formation of the NFGAIL peptide by computer simulations.
    Melquiond A; Gelly JC; Mousseau N; Derreumaux P
    J Chem Phys; 2007 Feb; 126(6):065101. PubMed ID: 17313247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of amyloidogenic peptide sequences using a coarse-grained physicochemical model.
    Clarke OJ; Parker MJ
    J Comput Chem; 2009 Mar; 30(4):621-30. PubMed ID: 18711722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of lipid-protein interactions in amyloid-type protein fibril formation.
    Gorbenko GP; Kinnunen PK
    Chem Phys Lipids; 2006 Jun; 141(1-2):72-82. PubMed ID: 16569401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II.
    Legge FS; Treutlein H; Howlett GJ; Yarovsky I
    Biophys Chem; 2007 Nov; 130(3):102-13. PubMed ID: 17825978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational conversion may precede or follow aggregate elongation on alternative pathways of amyloid protofibril formation.
    Kumar S; Udgaonkar JB
    J Mol Biol; 2009 Jan; 385(4):1266-76. PubMed ID: 19063899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early kinetics of amyloid fibril formation reveals conformational reorganisation of initial aggregates.
    Cerdà-Costa N; Esteras-Chopo A; Avilés FX; Serrano L; Villegas V
    J Mol Biol; 2007 Mar; 366(4):1351-63. PubMed ID: 17204287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular dynamics study of the interaction of D-peptide amyloid inhibitors with their target sequence reveals a potential inhibitory pharmacophore conformation.
    Esteras-Chopo A; Morra G; Moroni E; Serrano L; Lopez de la Paz M; Colombo G
    J Mol Biol; 2008 Oct; 383(1):266-80. PubMed ID: 18703072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-hairpin folding by a model amyloid peptide in solution and at an interface.
    Knecht V
    J Phys Chem B; 2008 Aug; 112(31):9476-83. PubMed ID: 18593146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloid fibril polymorphism is under kinetic control.
    Pellarin R; Schuetz P; Guarnera E; Caflisch A
    J Am Chem Soc; 2010 Oct; 132(42):14960-70. PubMed ID: 20923147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the early steps of Abeta16-22 protofibril disassembly by N-methylated inhibitors: a numerical study.
    Chebaro Y; Derreumaux P
    Proteins; 2009 May; 75(2):442-52. PubMed ID: 18837034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A toy model for predicting the rate of amyloid formation from unfolded protein.
    Hall D; Hirota N; Dobson CM
    J Mol Biol; 2005 Aug; 351(1):195-205. PubMed ID: 15993421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent.
    Lu Y; Derreumaux P; Guo Z; Mousseau N; Wei G
    Proteins; 2009 Jun; 75(4):954-63. PubMed ID: 19089954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.