These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 18029143)

  • 1. CT-perfusion imaging of the human brain: advanced deconvolution analysis using circulant singular value decomposition.
    Wittsack HJ; Wohlschläger AM; Ritzl EK; Kleiser R; Cohnen M; Seitz RJ; Mödder U
    Comput Med Imaging Graph; 2008 Jan; 32(1):67-77. PubMed ID: 18029143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix.
    Wu O; Østergaard L; Weisskoff RM; Benner T; Rosen BR; Sorensen AG
    Magn Reson Med; 2003 Jul; 50(1):164-74. PubMed ID: 12815691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the 2 Most Popular Deconvolution Techniques for the Detection of Penumbral Flow in Acute Stroke.
    Zaro-Weber O; Livne M; Martin SZ; von Samson-Himmelstjerna FC; Moeller-Hartmann W; Schuster A; Brunecker P; Heiss WD; Sobesky J; Madai VI
    Stroke; 2015 Oct; 46(10):2795-9. PubMed ID: 26306755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spatio-temporal deconvolution method to improve perfusion CT quantification.
    He L; Orten B; Do S; Karl WC; Kambadakone A; Sahani DV; Pien H
    IEEE Trans Med Imaging; 2010 May; 29(5):1182-91. PubMed ID: 20378468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian Estimation of CBF Measured by DSC-MRI in Patients with Moyamoya Disease: Comparison with
    Hara S; Tanaka Y; Hayashi S; Inaji M; Maehara T; Hori M; Aoki S; Ishii K; Nariai T
    AJNR Am J Neuroradiol; 2019 Nov; 40(11):1894-1900. PubMed ID: 31601573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference in tracer delay-induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms.
    Kudo K; Sasaki M; Ogasawara K; Terae S; Ehara S; Shirato H
    Radiology; 2009 Apr; 251(1):241-9. PubMed ID: 19190251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perfusion quantification by model-free arterial spin labeling using nonlinear stochastic regularization deconvolution.
    Ahlgren A; Wirestam R; Petersen ET; Ståhlberg F; Knutsson L
    Magn Reson Med; 2013 Nov; 70(5):1470-80. PubMed ID: 23281031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of clinical data of nonlinear stochastic deconvolution versus block-circulant singular value decomposition for quantitative dynamic susceptibility contrast magnetic resonance imaging.
    Peruzzo D; Zanderigo F; Bertoldo A; Pillonetto G; Cosottini M; Cobelli C
    Magn Reson Imaging; 2011 Sep; 29(7):927-36. PubMed ID: 21616625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical properties of cerebral CT perfusion imaging systems. Part II. Deconvolution-based systems.
    Li K; Chen GH
    Med Phys; 2019 Nov; 46(11):4881-4897. PubMed ID: 31495935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian estimation of cerebral perfusion using reduced-contrast-dose dynamic susceptibility contrast perfusion at 3T.
    Nael K; Mossadeghi B; Boutelier T; Kubal W; Krupinski EA; Dagher J; Villablanca JP
    AJNR Am J Neuroradiol; 2015 Apr; 36(4):710-8. PubMed ID: 25430859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computed tomography perfusion evaluation after extracranial-intracranial bypass surgery.
    Vos PC; Riordan AJ; Smit EJ; de Jong HW; van der Zwan A; Velthuis BK; Viergever MA; Dankbaar JW
    Clin Neurol Neurosurg; 2015 Sep; 136():139-46. PubMed ID: 26196329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute quantification of regional renal blood flow in swine by dynamic contrast-enhanced magnetic resonance imaging using a blood pool contrast agent.
    Lüdemann L; Nafz B; Elsner F; Grosse-Siestrup C; Meissler M; Kaufels N; Rehbein H; Persson PB; Michaely HJ; Lengsfeld P; Voth M; Gutberlet M
    Invest Radiol; 2009 Mar; 44(3):125-34. PubMed ID: 19151609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of perfusion by dynamic contrast-enhanced imaging using a deconvolution approach based on regression and singular value decomposition.
    Koh TS; Wu XY; Cheong LH; Lim CC
    IEEE Trans Med Imaging; 2004 Dec; 23(12):1532-42. PubMed ID: 15575410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracer delay correction of cerebral blood flow with dynamic susceptibility contrast-enhanced MRI.
    Ibaraki M; Shimosegawa E; Toyoshima H; Takahashi K; Miura S; Kanno I
    J Cereb Blood Flow Metab; 2005 Mar; 25(3):378-90. PubMed ID: 15674238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable spline deconvolution for dynamic susceptibility contrast MRI.
    Peruzzo D; Castellaro M; Pillonetto G; Bertoldo A
    Magn Reson Med; 2017 Nov; 78(5):1801-1811. PubMed ID: 28070897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition.
    Calamante F; Gadian DG; Connelly A
    Magn Reson Med; 2000 Sep; 44(3):466-73. PubMed ID: 10975900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On optimal backward perturbation analysis for the linear system with skew circulant coefficient matrix.
    Li J; Jiang Z; Shen N; Zhou J
    Comput Math Methods Med; 2013; 2013():707381. PubMed ID: 24369488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic segmentation of MR brain perfusion images using independent component analysis, thresholding, and Bayesian estimation.
    Kao YH; Guo WY; Wu YT; Liu KC; Chai WY; Lin CY; Hwang YS; Jy-Kang Liou A; Wu HM; Cheng HC; Yeh TC; Hsieh JC; Mu Huo Teng M
    Magn Reson Med; 2003 May; 49(5):885-94. PubMed ID: 12704771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A control point interpolation method for the non-parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI.
    Mehndiratta A; MacIntosh BJ; Crane DE; Payne SJ; Chappell MA
    Neuroimage; 2013 Jan; 64():560-70. PubMed ID: 22975158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correcting saturation effects of the arterial input function in dynamic susceptibility contrast-enhanced MRI: a Monte Carlo simulation.
    Brunecker P; Villringer A; Schultze J; Nolte CH; Jungehülsing GJ; Endres M; Steinbrink J
    Magn Reson Imaging; 2007 Nov; 25(9):1300-11. PubMed ID: 17462846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.