These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 1802932)

  • 1. Morphogenetic development of the area octavolateralis in the cichlid fish Oreochromis mossambicus.
    Körtje KH; Weber H; Rahmann H
    J Hirnforsch; 1991; 32(4):491-5. PubMed ID: 1802932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphogenetic differentiation of the brain of the cichlid fish, Oreochromis mossambicus.
    Bäuerle A; Rahmann H
    J Hirnforsch; 1993; 34(3):375-86. PubMed ID: 8270789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of development and altered gravity conditions on cytochrome oxidase activity in a vestibular nucleus of the larval teleost brain: a quantitative electronmicroscopical study.
    Paulus U; Körtje KH; Rahmann H
    J Neurobiol; 1993 Sep; 24(9):1131-41. PubMed ID: 8409974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogeny of corticotropin-releasing factor and of hypothalamic-pituitary-interrenal axis responsiveness to stress in tilapia (Oreochromis mossambicus; Teleostei).
    Pepels PP; Balm PH
    Gen Comp Endocrinol; 2004 Dec; 139(3):251-65. PubMed ID: 15560872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central projections of the octavolateralis nerves of the clearnose skate, Raja eglanteria.
    Koester DM
    J Comp Neurol; 1983 Dec; 221(2):199-215. PubMed ID: 6655082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae).
    Bell CC
    J Comp Neurol; 1981 Jan; 195(3):391-414. PubMed ID: 7204654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Octavolateral neurons projecting to the middle and posterior rhombencephalic reticular nuclei of larval lamprey: a retrograde horseradish peroxidase labeling study.
    González MJ; Manso MJ; Anadón R
    J Comp Neurol; 1997 Aug; 384(3):396-408. PubMed ID: 9254035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and organization of the ocular motor nuclei in the larval sea lamprey, Petromyzon marinus L.: an HRP study.
    Pombal MA; Rodicio MC; Anadon R
    J Comp Neurol; 1994 Mar; 341(3):393-406. PubMed ID: 7515082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat.
    Cechetto DF; Saper CB
    J Comp Neurol; 1987 Aug; 262(1):27-45. PubMed ID: 2442207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization of the primary projections of the lateral line nerves in the lamprey Lampetra japonica.
    Koyama H; Kishida R; Goris RC; Kusunoki T
    J Comp Neurol; 1990 May; 295(2):277-89. PubMed ID: 2358517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of afferent fibers in the brainstem from end organs in the ear and lateral line in the European eel.
    Meredith GE; Roberts BL; Maslam S
    J Comp Neurol; 1987 Nov; 265(4):507-20. PubMed ID: 2448347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of two prolactin and growth hormone genes during early development of tilapia (Oreochromis mossambicus) in fresh water and seawater: implications for possible involvement in osmoregulation during early life stages.
    Ayson FG; Kaneko T; Hasegawa S; Hirano T
    Gen Comp Endocrinol; 1994 Jul; 95(1):143-52. PubMed ID: 7926651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The octavolateral systems in the stingray, Dasyatis sabina. I. Primary projections of the octaval and lateral line nerves.
    Puzdrowski RL; Leonard RB
    J Comp Neurol; 1993 Jun; 332(1):21-37. PubMed ID: 8514920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple origins of cerebellar cholinergic afferents from the lower brainstem in the gerbil.
    Lan CT; Wen CY; Tan CK; Ling EA; Shieh JY
    J Anat; 1995 Jun; 186 ( Pt 3)(Pt 3):549-61. PubMed ID: 7559128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution and morphological characteristics of efferent neurons innervating end organs in the ear and lateral line of the European eel.
    Meredith GE; Roberts BL
    J Comp Neurol; 1987 Nov; 265(4):494-506. PubMed ID: 2448346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the dorsal root ganglion in a teleost, Oreochromis mossambicus (Peters).
    Laudel TP; Lim TM
    J Comp Neurol; 1993 Jan; 327(1):141-50. PubMed ID: 8432905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the electrosensory nervous system in Eigenmannia (Gymnotiformes): I. The peripheral nervous system.
    Vischer HA; Lannoo MJ; Heiligenberg W
    J Comp Neurol; 1989 Dec; 290(1):16-40. PubMed ID: 2592608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Afferent and efferent connections of the primary octaval nuclei in the clearnose skate, Raja eglanteria.
    Barry MA
    J Comp Neurol; 1987 Dec; 266(4):457-77. PubMed ID: 2449470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exteroceptive and proprioceptive afferents of the trigeminal and facial motor nuclei in the mallard (Anas platyrhynchos L.).
    Arends JJ; Dubbeldam JL
    J Comp Neurol; 1982 Aug; 209(3):313-29. PubMed ID: 7130459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chick wing innervation. II. Morphology of motor and sensory axons and their growth cones during early development.
    Hollyday M; Morgan-Carr M
    J Comp Neurol; 1995 Jun; 357(2):254-71. PubMed ID: 7665728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.