These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18029705)

  • 1. Selective oxidation of methylcytosine in single base pair mismatches by osmium complex.
    Nomura A; Tainaka K; Okamoto A
    Nucleic Acids Symp Ser (Oxf); 2007; (51):299-300. PubMed ID: 18029705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmium complex binding to mismatched methylcytosine: effect of adjacent bases.
    Nomura A; Tainaka K; Okamoto A
    Nucleic Acids Symp Ser (Oxf); 2009; (53):207-8. PubMed ID: 19749333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osmium complexation of mismatched DNA: effect of the bases adjacent to mismatched 5-methylcytosine.
    Nomura A; Tainaka K; Okamoto A
    Bioconjug Chem; 2009 Mar; 20(3):603-7. PubMed ID: 19216555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of bipyridine-modified nucleobase for methylcytosine-selective crosslink reaction.
    Tainaka K; Tanaka K; Okamoto A
    Nucleic Acids Symp Ser (Oxf); 2006; (50):129-30. PubMed ID: 17150851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-selective 5-methylcytosine oxidation for epigenotyping.
    Okamoto A; Tainaka K
    Nucleic Acids Symp Ser (Oxf); 2005; (49):45-6. PubMed ID: 17150625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA methylation analysis using metal complex formation.
    Okamoto A; Tanaka K; Tainaka K; Umemoto T; Nomura A
    Nucleic Acids Symp Ser (Oxf); 2007; (51):27-8. PubMed ID: 18029569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-methylcytosine-selective osmium oxidation.
    Okamoto A
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(10-12):1601-4. PubMed ID: 18066835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-selective osmium oxidation of DNA: efficient distinction between 5-methylcytosine and cytosine.
    Okamoto A; Tainaka K; Kamei T
    Org Biomol Chem; 2006 May; 4(9):1638-40. PubMed ID: 16633552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-incorporation site in 5-methylcytosine-detection probe modulating the site of osmium complexation with the target DNA.
    Sugizaki K; Nakamura A; Yanagisawa H; Okamoto A
    Chem Biodivers; 2012 Sep; 9(9):2000-7. PubMed ID: 22976987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of electrochemical detection for methylcytosine and its application.
    Tanaka K; Tainaka K; Kamei T; Okamoto A
    Nucleic Acids Symp Ser (Oxf); 2006; (50):141-2. PubMed ID: 17150857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence quenching by methylcytosine-metal complexation.
    Tanaka K; Tainaka K; Okamoto A
    Nucleic Acids Symp Ser (Oxf); 2006; (50):139-40. PubMed ID: 17150856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleavage at 5-methylcytosine in DNA by photosensitized oxidation with 2-methyl-1,4-naphthoquinone tethered oligodeoxynucleotides.
    Yamada H; Tanabe K; Nishimoto S
    Bioorg Med Chem Lett; 2005 Feb; 15(3):665-8. PubMed ID: 15664833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of fluorescence-labeling method for methylcytosine with metal complexation.
    Tanaka K; Tainaka K; Kamei T; Okamoto A
    Nucleic Acids Symp Ser (Oxf); 2006; (50):135-6. PubMed ID: 17150854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of 5-methylcytosine in DNA by photo-functionalized oligodeoxynucleotides possessing 2-methyl-1,4-naphthoquinone chromophore.
    Yamada H; Tanabe K; Nishimoto S
    Nucleic Acids Symp Ser (Oxf); 2005; (49):149-50. PubMed ID: 17150677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative reactivity of mismatched and unpaired bases in relation to their type and surroundings. Chemical cleavage of DNA mismatches in mutation detection analysis.
    Yakubovskaya MG; Belyakova AA; Gasanova VK; Belitsky GA; Dolinnaya NG
    Biochimie; 2010 Jul; 92(7):762-71. PubMed ID: 20171258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-selective strand cleavage at methylated cytosine: regional effect of naphthoquinone chromophore on the one-electron photooxidation of 5-methylcytosine and positive charge transfer in DNA.
    Yamada H; Tanabe K; Nishimoto S
    Nucleic Acids Symp Ser (Oxf); 2007; (51):219-20. PubMed ID: 18029665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective detection of 5-methylcytosine sites in DNA.
    Bareyt S; Carell T
    Angew Chem Int Ed Engl; 2008; 47(1):181-4. PubMed ID: 18041015
    [No Abstract]   [Full Text] [Related]  

  • 18. Photoelectrochemical identification of 5-methylcytosine modification in DNA: combination of photosensitization and enzymatic cleavage.
    Tanabe K; Yamada H; Ito T; Nishimoto S
    Nucleic Acids Symp Ser (Oxf); 2009; (53):205-6. PubMed ID: 19749332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidatively generated damage to DNA at 5-methylcytosine mispairs.
    Joseph J; Schuster GB
    Photochem Photobiol Sci; 2012 Jun; 11(6):998-1003. PubMed ID: 22327601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA hairpins containing a diaminostilbene derivative as a photoinduced electron donor for probing the effects of single-base mismatches on excess electron transfer in DNA.
    Ito T; Hayashi A; Kondo A; Uchida T; Tanabe K; Yamada H; Nishimoto S
    Org Lett; 2009 Feb; 11(4):927-30. PubMed ID: 19170616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.