BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18029725)

  • 61. Electrochemical biosensors based on DNA strand exchange.
    Watanabe M; Yoshizumi J; Kumamoto S; Nakamura M; Maruyama A; Yamana K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):321-2. PubMed ID: 18029716
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Exploiting the interactions of PNA-DNA films with Ni2+ ions: detection of nucleobase mismatches and electrochemical genotyping of the single-nucleotide mismatch in apoE 4 related to Alzheimer's disease.
    Guo K; Li X; Kraatz HB
    Biosens Bioelectron; 2011 Sep; 27(1):187-91. PubMed ID: 21752624
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Single nucleotide polymorphism typing on DNA array with hydrophobic surface fabricated by plasma-polymerization technique.
    Miyachi H; Ikebukuro K; Yano K; Aburatani H; Karube I
    Biosens Bioelectron; 2004 Sep; 20(2):184-9. PubMed ID: 15308220
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A strand exchange FRET assay for DNA.
    Ho FM; Hall EA
    Biosens Bioelectron; 2004 Nov; 20(5):1001-10. PubMed ID: 15530797
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synergistic stabilization of triplex by combination of comb-type cationic copolymer and 2',4'-BNA.
    Katayama T; Maruyama A; Obika S; Imanishi T; Torigoe H
    Nucleic Acids Symp Ser (Oxf); 2004; (48):139-40. PubMed ID: 17150517
    [TBL] [Abstract][Full Text] [Related]  

  • 66. DNA mismatch detection using a pyrene-excimer-forming probe.
    Yamana K; Fukunaga Y; Ohtani Y; Sato S; Nakamura M; Kim WJ; Akaike T; Maruyama A
    Chem Commun (Camb); 2005 May; (19):2509-11. PubMed ID: 15886787
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sensitive discrimination of stable mismatched base pairs by an abasic site modified fluorescent probe and lambda exonuclease.
    Wu T; Xiao X; Gu F; Zhao M
    Chem Commun (Camb); 2015 Dec; 51(98):17402-5. PubMed ID: 26465212
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Detection of single nucleotide polymorphisms within a sequence of a gene associated with prostate cancer using a fluorophore-tagged DNA probe.
    Zhao ZY; San M; Duprey JL; Arrand JR; Vyle JS; Tucker JH
    Bioorg Med Chem Lett; 2012 Jan; 22(1):129-32. PubMed ID: 22169264
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Using double-stranded DNA probes to promote specificity in target capture.
    Baker BA; Mahmoudabadi G; Milam VT
    Colloids Surf B Biointerfaces; 2013 Feb; 102():884-90. PubMed ID: 23124019
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Improved sensitivity for solid-support invasive cleavage reactions with flow cytometry analysis.
    Stevens PW; Rao KV; Hall JG; Lyamichev V; Neri BP; Kelso DM
    Biotechniques; 2003 Jan; 34(1):198-203. PubMed ID: 12545560
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fluorescent detection of single nucleotide polymorphism utilizing a hairpin DNA containing a nucleotide base analog pyrrolo-deoxycytidine as a fluorescent probe.
    Zhang H; Wang M; Gao Q; Qi H; Zhang C
    Talanta; 2011 May; 84(3):771-6. PubMed ID: 21482281
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.
    Chen YT; Hsu CL; Hou SY
    Anal Biochem; 2008 Apr; 375(2):299-305. PubMed ID: 18211817
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Detection of a single DNA base-pair mismatch using an anthracene-tagged fluorescent probe.
    Moran N; Bassani DM; Desvergne JP; Keiper S; Lowden PA; Vyle JS; Tucker JH
    Chem Commun (Camb); 2006 Dec; (48):5003-5. PubMed ID: 17146508
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Single nucleotide polymorphism detection method by temperature-gradient affinity chromatography using a single-stranded oligo-DNA coupled column.
    Katsuda T; Nishijima K; Kamura M; Nishiwada Y; Katoh S
    J Chromatogr A; 2006 Aug; 1123(2):182-8. PubMed ID: 16480996
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Use of abasic site-containing DNA for electrochemical SNPs detection.
    Morita K; Nishizawa S; Teramae N
    Nucleic Acids Symp Ser (Oxf); 2006; (50):91-2. PubMed ID: 17150832
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Recognition of a C-C mismatch in a DNA duplex using a fluorescent small molecule with application for "off-on" discrimination of C/G mutation.
    Hu L; Wang Y; Wang W; Gao Q; Qi H; Zhang C
    Appl Spectrosc; 2012 Feb; 66(2):170-4. PubMed ID: 22449280
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel method for the detection of point mutation in DNA using single-base-coded CdS nanoprobes.
    Ye M; Zhang Y; Li H; Zhang Y; Tan P; Tang H; Yao S
    Biosens Bioelectron; 2009 Apr; 24(8):2339-45. PubMed ID: 19135353
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A colorimetric method for point mutation detection using high-fidelity DNA ligase.
    Li J; Chu X; Liu Y; Jiang JH; He Z; Zhang Z; Shen G; Yu RQ
    Nucleic Acids Res; 2005 Oct; 33(19):e168. PubMed ID: 16257979
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Scanning positional variations in single-nucleotide polymorphism of DNA: an electrochemical study.
    Alam MN; Shamsi MH; Kraatz HB
    Analyst; 2012 Sep; 137(18):4220-5. PubMed ID: 22842513
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electrochemical signature of mismatch in overhang DNA films: a scanning electrochemical microscopic study.
    Shamsi MH; Kraatz HB
    Analyst; 2013 Jun; 138(12):3538-43. PubMed ID: 23671908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.