BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18030420)

  • 1. Successful neural regeneration in amniotes: the developing chick spinal cord.
    Ferretti P; Whalley K
    Cell Mol Life Sci; 2008 Jan; 65(1):45-53. PubMed ID: 18030420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in progenitor populations and ongoing neurogenesis in the regenerating chick spinal cord.
    Whalley K; Gögel S; Lange S; Ferretti P
    Dev Biol; 2009 Aug; 332(2):234-45. PubMed ID: 19497320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability.
    Lange S; Gögel S; Leung KY; Vernay B; Nicholas AP; Causey CP; Thompson PR; Greene ND; Ferretti P
    Dev Biol; 2011 Jul; 355(2):205-14. PubMed ID: 21539830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nogo and Nogo-66 receptor in human and chick: implications for development and regeneration.
    O'Neill P; Whalley K; Ferretti P
    Dev Dyn; 2004 Sep; 231(1):109-21. PubMed ID: 15305291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-translational regulation of Crmp in developing and regenerating chick spinal cord.
    Gögel S; Lange S; Leung KY; Greene ND; Ferretti P
    Dev Neurobiol; 2010 May; 70(6):456-71. PubMed ID: 20162635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Dec; 66(14):1564-83. PubMed ID: 17058193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in spinal cord regenerative ability through phylogenesis and development: lessons to be learnt.
    Ferretti P; Zhang F; O'Neill P
    Dev Dyn; 2003 Feb; 226(2):245-56. PubMed ID: 12557203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further amputations of the tail in adult Triturus carnifex: contribution to the study on the nature of regenerated spinal cord.
    Margotta V
    Ital J Anat Embryol; 2008; 113(3):167-86. PubMed ID: 19205589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axonal regeneration contributes to repair of injured brainstem-spinal neurons in embryonic chick.
    Hasan SJ; Keirstead HS; Muir GD; Steeves JD
    J Neurosci; 1993 Feb; 13(2):492-507. PubMed ID: 8426225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raphe-spinal neurons display an age-dependent differential capacity for neurite outgrowth compared to other brainstem-spinal populations.
    Borisoff JF; Pataky DM; McBride CB; Steeves JD
    Exp Neurol; 2000 Nov; 166(1):16-28. PubMed ID: 11031080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different Fgfs have distinct roles in regulating neurogenesis after spinal cord injury in zebrafish.
    Goldshmit Y; Tang JKKY; Siegel AL; Nguyen PD; Kaslin J; Currie PD; Jusuf PR
    Neural Dev; 2018 Nov; 13(1):24. PubMed ID: 30447699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord.
    Sigurjonsson OE; Perreault MC; Egeland T; Glover JC
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5227-32. PubMed ID: 15790679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural cells and their progenitors in regenerating zebrafish spinal cord.
    Hui SP; Nag TC; Ghosh S
    Int J Dev Biol; 2020; 64(4-5-6):353-366. PubMed ID: 32658995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis.
    Edwards-Faret G; González-Pinto K; Cebrián-Silla A; Peñailillo J; García-Verdugo JM; Larraín J
    Neural Dev; 2021 Feb; 16(1):2. PubMed ID: 33526076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in protein expression associated with the developmental transition from permissive to restrictive states of spinal cord repair in embryonic chick.
    Ethell DW; Steeves JD
    Brain Res Dev Brain Res; 1993 Dec; 76(2):163-9. PubMed ID: 8149582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes within maturing neurons limit axonal regeneration in the developing spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Mar; 66(4):348-60. PubMed ID: 16408302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro model of neurotrauma using the chick embryo to test regenerative bioimplantation.
    Mogas Barcons A; Chari DM; Adams C
    ALTEX; 2024; 41(2):202-212. PubMed ID: 37921418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restitution of functional neural connections in chick embryos assessed in vitro after spinal cord transection in Ovo.
    Sholomenko GN; Delaney KR
    Exp Neurol; 1998 Dec; 154(2):430-51. PubMed ID: 9878180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in mRNA content of developing opossum spinal cord at stages when regeneration can and cannot occur after injury.
    Mladinic M; Wintzer M
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):317-24. PubMed ID: 12589930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of morphogenetic potential of caudal spinal cord in Triturus carnifex adults (Urodele amphibians) subjected to repeated tail amputations.
    Margotta V; Filoni S; Merante A; Chimenti C
    Ital J Anat Embryol; 2002; 107(2):127-44. PubMed ID: 12113527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.