These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18030456)

  • 1. Error generalization as a function of velocity and duration: human reaching movements.
    Francis JT
    Exp Brain Res; 2008 Mar; 186(1):23-37. PubMed ID: 18030456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.
    Joiner WM; Ajayi O; Sing GC; Smith MA
    J Neurophysiol; 2011 Jan; 105(1):45-59. PubMed ID: 20881197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of internal dynamics models in limb movements depends on stability.
    Milner TE
    Exp Brain Res; 2004 Nov; 159(2):172-84. PubMed ID: 15243728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control.
    Donchin O; Francis JT; Shadmehr R
    J Neurosci; 2003 Oct; 23(27):9032-45. PubMed ID: 14534237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial generalization from learning dynamics of reaching movements.
    Shadmehr R; Moussavi ZM
    J Neurosci; 2000 Oct; 20(20):7807-15. PubMed ID: 11027245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalization of dynamics learning across changes in movement amplitude.
    Mattar AA; Ostry DJ
    J Neurophysiol; 2010 Jul; 104(1):426-38. PubMed ID: 20463200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and amplitude generalization in motor learning.
    Goodbody SJ; Wolpert DM
    J Neurophysiol; 1998 Apr; 79(4):1825-38. PubMed ID: 9535951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalization properties of a "saccadic-like" hand-reaching adaptation along a single degree of freedom.
    Laurent D; Sillan O; Prablanc C
    Exp Brain Res; 2012 Feb; 216(4):609-20. PubMed ID: 22143869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-phase strategy of neural control for planar reaching movements: II--relation to spatiotemporal characteristics of movement trajectory.
    Rand MK; Shimansky YP
    Exp Brain Res; 2013 Sep; 230(1):1-13. PubMed ID: 23811737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling reaching movements with predictable and unpredictable target motion in 10-year-old children and adults.
    Daum MM; Huber S; Krist H
    Exp Brain Res; 2007 Mar; 177(4):483-92. PubMed ID: 17006685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pointing movements may be produced in different frames of reference depending on the task demand.
    Ghafouri M; Archambault PS; Adamovich SV; Feldman AG
    Brain Res; 2002 Mar; 929(1):117-28. PubMed ID: 11852038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive strategies in interception tasks: differences between eye and hand movements.
    Eggert T; Rivas F; Straube A
    Exp Brain Res; 2005 Jan; 160(4):433-49. PubMed ID: 15551090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalization of unconstrained reaching with hand-weight changes.
    Yan X; Wang Q; Lu Z; Stevenson IH; Körding K; Wei K
    J Neurophysiol; 2013 Jan; 109(1):137-46. PubMed ID: 23054601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer of motor learning across arm configurations.
    Malfait N; Shiller DM; Ostry DJ
    J Neurosci; 2002 Nov; 22(22):9656-60. PubMed ID: 12427820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A real-time state predictor in motor control: study of saccadic eye movements during unseen reaching movements.
    Ariff G; Donchin O; Nanayakkara T; Shadmehr R
    J Neurosci; 2002 Sep; 22(17):7721-9. PubMed ID: 12196595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation and spatial generalization to a triaxial visuomotor perturbation in a virtual reality environment.
    Lefrançois C; Messier J
    Exp Brain Res; 2019 Mar; 237(3):793-803. PubMed ID: 30607472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses.
    Wang T; Dordevic GS; Shadmehr R
    Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.