BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 18030488)

  • 1. fs-Laser induced elasticity changes to improve presbyopic lens accommodation.
    Ripken T; Oberheide U; Fromm M; Schumacher S; Gerten G; Lubatschowski H
    Graefes Arch Clin Exp Ophthalmol; 2008 Jun; 246(6):897-906. PubMed ID: 18030488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond laser induced flexibility change of human donor lenses.
    Schumacher S; Oberheide U; Fromm M; Ripken T; Ertmer W; Gerten G; Wegener A; Lubatschowski H
    Vision Res; 2009 Jul; 49(14):1853-9. PubMed ID: 19427880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Ex Vivo Porcine Lens Shape During Simulated Accommodation, Before and After fs-Laser Treatment.
    Hahn J; Fromm M; Al Halabi F; Besdo S; Lubatschowski H; Ripken T; Krüger A
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5332-43. PubMed ID: 26275131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [fs-Lentotomy: presbyopia reversal by generating gliding planes inside the crystalline lens].
    Lubatschowski H; Schumacher S; Wegener A; Fromm M; Oberheide U; Hoffmann H; Gerten G
    Klin Monbl Augenheilkd; 2009 Dec; 226(12):984-90. PubMed ID: 20108193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability.
    Lubatschowski H; Schumacher S; Fromm M; Wegener A; Hoffmann H; Oberheide U; Gerten G
    J Biophotonics; 2010 Jun; 3(5-6):265-8. PubMed ID: 20437418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo application and imaging of intralenticular femtosecond laser pulses for the restoration of accommodation.
    Schumacher S; Fromm M; Oberheide U; Gerten G; Wegener A; Lubatschowski H
    J Refract Surg; 2008 Nov; 24(9):991-5. PubMed ID: 19044246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Presbyopia treatment using a femtosecond laser].
    Blum M; Kunert K; Nolte S; Riehemann S; Palme M; Peschel T; Dick M; Dick HB
    Ophthalmologe; 2006 Dec; 103(12):1014-9. PubMed ID: 17111185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element modelling of radial lentotomy cuts to improve the accommodation performance of the human lens.
    Burd HJ; Wilde GS
    Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):727-37. PubMed ID: 26916782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pig lenses in a lens stretcher: implications for presbyopia treatment.
    Kammel R; Ackermann R; Mai T; Damm C; Nolte S
    Optom Vis Sci; 2012 Jun; 89(6):908-15. PubMed ID: 22561204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes.
    Koopmans SA; Terwee T; Barkhof J; Haitjema HJ; Kooijman AC
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):250-7. PubMed ID: 12506082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond laser photodisruption of the crystalline lens for restoring accommodation.
    Reggiani Mello GH; Krueger RR
    Int Ophthalmol Clin; 2011; 51(2):87-95. PubMed ID: 21383582
    [No Abstract]   [Full Text] [Related]  

  • 12. [In vitro and in vivo investigations on the treatment of presbyopia using femtosecond lasers].
    Gerten G; Ripken T; Breitenfeld P; Krueger RR; Kermani O; Lubatschowski H; Oberheide U
    Ophthalmologe; 2007 Jan; 104(1):40-6. PubMed ID: 16874535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety evaluation of femtosecond lentotomy on the porcine lens by optical measurement with 50-femtosecond laser pulses.
    Zhang J; Wang R; Chen B; Ye P; Zhang W; Zhao H; Zhen J; Huang Y; Wei Z; Gu Y
    Lasers Surg Med; 2013 Sep; 45(7):450-9. PubMed ID: 23926059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.
    Stachs O; Schumacher S; Hovakimyan M; Fromm M; Heisterkamp A; Lubatschowski H; Guthoff R
    J Cataract Refract Surg; 2009 Nov; 35(11):1979-83. PubMed ID: 19878832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the behavior of natural and refilled porcine lenses in a robotic lens stretcher.
    Reilly MA; Hamilton PD; Perry G; Ravi N
    Exp Eye Res; 2009 Mar; 88(3):483-94. PubMed ID: 19041865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental increase in accommodative potential after neodymium: yttrium-aluminum-garnet laser photodisruption of paired cadaver lenses.
    Krueger RR; Sun XK; Stroh J; Myers R
    Ophthalmology; 2001 Nov; 108(11):2122-9. PubMed ID: 11713090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative geometric mechanics lens model: insights into the mechanisms of accommodation and presbyopia.
    Reilly MA
    Vision Res; 2014 Oct; 103():20-31. PubMed ID: 25130408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoration of accommodation: surgical options for correction of presbyopia.
    Glasser A
    Clin Exp Optom; 2008 May; 91(3):279-95. PubMed ID: 18399800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Accommodation and presbyopia : part 1: physiology of accommodation and development of presbyopia].
    Baumeister M; Kohnen T
    Ophthalmologe; 2008 Jun; 105(6):597-608; quiz 609-10. PubMed ID: 18594896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanics of accommodation in relation to presbyopia.
    Fisher RF
    Eye (Lond); 1988; 2 ( Pt 6)():646-9. PubMed ID: 3256503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.