These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 18030746)

  • 21. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.
    Martínez-de la Cruz E; García-Ramírez E; Vázquez-Ramos JM; Reyes de la Cruz H; López-Bucio J
    J Plant Physiol; 2015 Mar; 176():147-56. PubMed ID: 25615607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress.
    Ciniglia C; Mastrobuoni F; Scortichini M; Petriccione M
    Ecotoxicology; 2015 May; 24(4):926-37. PubMed ID: 25736610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings.
    Menezes-Benavente L; Kernodle SP; Margis-Pinheiro M; Scandalios JG
    Redox Rep; 2004; 9(1):29-36. PubMed ID: 15035825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Responses of Nonprotein Thiols to Stress of Vanadium and Mercury in Maize (Zea mays L.) Seedlings.
    Hou M; Li M; Yang X; Pan R
    Bull Environ Contam Toxicol; 2019 Mar; 102(3):425-431. PubMed ID: 30683955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of gravitropism in primary roots of Zea mays by chloramphenicol.
    Moore R
    Am J Bot; 1985 May; 72(5):733-6. PubMed ID: 11540886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of NO3- supply on lateral root growth in maize plants].
    Guo YF; Mi GH; Chen FJ; Zhang FS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):90-6. PubMed ID: 15692184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fumonisin production and bioavailability to maize seedlings grown from seeds inoculated with Fusarium verticillioides and grown in natural soils.
    Williams LD; Glenn AE; Bacon CW; Smith MA; Riley RT
    J Agric Food Chem; 2006 Jul; 54(15):5694-700. PubMed ID: 16848565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assays for root hydrotropism and response to water stress.
    Eapen D; Martínez JJ; Cassab GI
    Methods Mol Biol; 2015; 1309():133-42. PubMed ID: 25981773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of multiwalled carbon nanotubes and sodium dodecyl benzene sulfonate on bioaccumulation and translocation of pyrene and 1-methylpyrene in maize (Zea mays) seedlings.
    Zhang H; Liu Y; Shen X; Zhang M; Yang Y; Tao S; Wang X
    Environ Pollut; 2017 Jan; 220(Pt B):1409-1417. PubMed ID: 27836475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.).
    Wang M; Zou J; Duan X; Jiang W; Liu D
    Bioresour Technol; 2007 Jan; 98(1):82-8. PubMed ID: 16426846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fumonisin disruption of ceramide biosynthesis in maize roots and the effects on plant development and Fusarium verticillioides-induced seedling disease.
    Williams LD; Glenn AE; Zimeri AM; Bacon CW; Smith MA; Riley RT
    J Agric Food Chem; 2007 Apr; 55(8):2937-46. PubMed ID: 17381121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comment on mRNA-Sequencing Analysis Reveals Transcriptional Changes in Root of Maize Seedlings Treated with Two Increasing Concentrations of a New Biostimulant.
    da Silva RR
    J Agric Food Chem; 2018 Feb; 66(8):2061-2062. PubMed ID: 29443526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress.
    Qing DJ; Lu HF; Li N; Dong HT; Dong DF; Li YZ
    Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Descriptive and hedonic analyses of low-Phe food formulations containing corn (Zea mays) seedling roots: toward development of a dietary supplement for individuals with phenylketonuria.
    Cliff MA; Law JR; Lücker J; Scaman CH; Kermode AR
    J Sci Food Agric; 2016 Jan; 96(1):140-9. PubMed ID: 25564785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.).
    Liu DH; Jiang WS; Hou WQ
    J Environ Sci (China); 2001 Apr; 13(2):228-32. PubMed ID: 11590748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Level nitric oxide (NO) and growth of roots of etiolated pea seedlings].
    Glian'ko AK; Ishchenko AA
    Izv Akad Nauk Ser Biol; 2013; (6):689-95. PubMed ID: 25518555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cu-Chitosan Nanoparticle Mediated Sustainable Approach To Enhance Seedling Growth in Maize by Mobilizing Reserved Food.
    Saharan V; Kumaraswamy RV; Choudhary RC; Kumari S; Pal A; Raliya R; Biswas P
    J Agric Food Chem; 2016 Aug; 64(31):6148-55. PubMed ID: 27460439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper.
    Tanyolaç D; Ekmekçi Y; Unalan S
    Chemosphere; 2007 Feb; 67(1):89-98. PubMed ID: 17109927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Signaling pathways of the phytohormonal stimulation of root pumping activity.
    Zholkevich VN; Dustmamatov AG
    Dokl Biol Sci; 2004; 395():140-2. PubMed ID: 15255146
    [No Abstract]   [Full Text] [Related]  

  • 40. Aboveground mechanical stimuli affect belowground plant-plant communication.
    Elhakeem A; Markovic D; Broberg A; Anten NPR; Ninkovic V
    PLoS One; 2018; 13(5):e0195646. PubMed ID: 29718944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.