These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 18030760)

  • 1. [Obtaining of isolated enterocytes from the small intestine of cattle fetuses under the control of biochemical indices of cell fractions].
    Buhaĭ AO; Tsvilikhovs'kyĭ MI
    Ukr Biokhim Zh (1999); 2007; 79(2):129-34. PubMed ID: 18030760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The isolation of plasma membrane fractions from the enterocytes of the small intestine in animals of different ages].
    Tsvilikhovs'kyĭ MI
    Fiziol Zh (1994); 1997; 43(3-4):101-5. PubMed ID: 9303792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocytosis of cholera toxin by human enterocytes is developmentally regulated.
    Lu L; Khan S; Lencer W; Walker WA
    Am J Physiol Gastrointest Liver Physiol; 2005 Aug; 289(2):G332-41. PubMed ID: 15790757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of epithelial cells, villi and crypts from small intestine of pigeons (Columba livia).
    Mac Donal O; Chediack JG; Caviedes-Vidal E
    Biocell; 2008 Dec; 32(3):219-27. PubMed ID: 19181184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of villus absorptive cells in the human fetal small intestine: a morphological and morphometric study.
    Moxey PC; Trier JS
    Anat Rec; 1979 Nov; 195(3):463-82. PubMed ID: 507402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-7 integrin controls enterocyte migration in the small intestine.
    Kaemmerer E; Kuhn P; Schneider U; Clahsen T; Jeon MK; Klaus C; Andruszkow J; Härer M; Ernst S; Schippers A; Wagner N; Gassler N
    World J Gastroenterol; 2015 Feb; 21(6):1759-64. PubMed ID: 25684940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Early fetal development of the small intestine mucosa in cattle (Bos primigenius taurus)].
    Winkler F; Wille KH
    Anat Histol Embryol; 1998 Oct; 27(5):335-43. PubMed ID: 9818454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and use of enterocytes.
    Pinkus LM
    Methods Enzymol; 1981; 77():154-62. PubMed ID: 6799731
    [No Abstract]   [Full Text] [Related]  

  • 9. [Further contribution on the fine structure of fetal goblet cells. Investigations on the small intestine of cattle].
    Wille KH; Winkler F
    Anat Histol Embryol; 1999 Mar; 28(1):49-53. PubMed ID: 10208036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survey of enterocyte morphology and tight junction formation in the small intestine of avian embryos.
    Karcher DM; Applegate T
    Poult Sci; 2008 Feb; 87(2):339-50. PubMed ID: 18212379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Prenatal development of the lamina epithelialis in the phase of vacuolization of villous epithelial cells. Investigations on the intestines of cattle (Bos primigenius taurus L., 1758)].
    Wille KH; Winkler F
    Anat Histol Embryol; 1998 Dec; 27(6):365-73. PubMed ID: 9972643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterisation of non-absorptive and absorptive enterocytes in human small intestine.
    Gassler N; Newrzella D; Böhm C; Lyer S; Li L; Sorgenfrei O; van Laer L; Sido B; Mollenhauer J; Poustka A; Schirmacher P; Gretz N
    Gut; 2006 Aug; 55(8):1084-9. PubMed ID: 16556670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of enterocyte-like cells with pharmacokinetic functions from human induced pluripotent stem cells using small-molecule compounds.
    Iwao T; Kodama N; Kondo Y; Kabeya T; Nakamura K; Horikawa T; Niwa T; Kurose K; Matsunaga T
    Drug Metab Dispos; 2015 Apr; 43(4):603-10. PubMed ID: 25650381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and metabolic characteristics of rat and chicken enterocytes.
    Watford M; Lund P; Krebs HA
    Biochem J; 1979 Mar; 178(3):589-96. PubMed ID: 454367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation, culture, and characterization of chicken intestinal epithelial cells.
    Ghiselli F; Rossi B; Felici M; Parigi M; Tosi G; Fiorentini L; Massi P; Piva A; Grilli E
    BMC Mol Cell Biol; 2021 Feb; 22(1):12. PubMed ID: 33579204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparative analysis of SGLT1 and GLUT2 transporter distribution in rat small intestine enterocytes and Caco2 cells during hexose absorption].
    Grefner NM; Gromova LV; Gruzdkov AA; Komissarchik IaIu
    Tsitologiia; 2010; 52(7):580-7. PubMed ID: 20799624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of human primary enterocytes from small intestine using a novel method.
    Chougule P; Herlenius G; Hernandez NM; Patil PB; Xu B; Sumitran-Holgersson S
    Scand J Gastroenterol; 2012 Nov; 47(11):1334-43. PubMed ID: 22943429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Methodical aspects of obtaining isolated small intestine epithelial cells].
    Usatiuk PV
    Ukr Biokhim Zh (1999); 1999; 71(2):10-3. PubMed ID: 10609295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribonucleic acid (RNA) of the epithelium of the small intestine in organogenesis and in portal hypertension. An experimental study.
    Cavalli G; Bacci G; Bianchi FB; Casali AM
    Digestion; 1968; 1(1):27-32. PubMed ID: 5671966
    [No Abstract]   [Full Text] [Related]  

  • 20. Organic cation/carnitine transporter OCTN2 (Slc22a5) is responsible for carnitine transport across apical membranes of small intestinal epithelial cells in mouse.
    Kato Y; Sugiura M; Sugiura T; Wakayama T; Kubo Y; Kobayashi D; Sai Y; Tamai I; Iseki S; Tsuji A
    Mol Pharmacol; 2006 Sep; 70(3):829-37. PubMed ID: 16754783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.