BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 18030992)

  • 1. Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins.
    Poole LB; Klomsiri C; Knaggs SA; Furdui CM; Nelson KJ; Thomas MJ; Fetrow JS; Daniel LW; King SB
    Bioconjug Chem; 2007; 18(6):2004-17. PubMed ID: 18030992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of chemical probes to map sulfenic acid modifications on proteins.
    Poole LB; Zeng BB; Knaggs SA; Yakubu M; King SB
    Bioconjug Chem; 2005; 16(6):1624-8. PubMed ID: 16287263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of dimedone-based chemical probes for sulfenic acid detection methods to visualize and identify labeled proteins.
    Nelson KJ; Klomsiri C; Codreanu SG; Soito L; Liebler DC; Rogers LC; Daniel LW; Poole LB
    Methods Enzymol; 2010; 473():95-115. PubMed ID: 20513473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins.
    Klomsiri C; Nelson KJ; Bechtold E; Soito L; Johnson LC; Lowther WT; Ryu SE; King SB; Furdui CM; Poole LB
    Methods Enzymol; 2010; 473():77-94. PubMed ID: 20513472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical approaches to detect and analyze protein sulfenic acids.
    Furdui CM; Poole LB
    Mass Spectrom Rev; 2014; 33(2):126-46. PubMed ID: 24105931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids.
    Reisz JA; Bechtold E; King SB; Poole LB; Furdui CM
    FEBS J; 2013 Dec; 280(23):6150-61. PubMed ID: 24103186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widespread sulfenic acid formation in tissues in response to hydrogen peroxide.
    Saurin AT; Neubert H; Brennan JP; Eaton P
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17982-7. PubMed ID: 15604151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strained cycloalkynes as new protein sulfenic acid traps.
    Poole TH; Reisz JA; Zhao W; Poole LB; Furdui CM; King SB
    J Am Chem Soc; 2014 Apr; 136(17):6167-70. PubMed ID: 24724926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase.
    Ellis HR; Poole LB
    Biochemistry; 1997 Dec; 36(48):15013-8. PubMed ID: 9398227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfenic acid chemistry, detection and cellular lifetime.
    Gupta V; Carroll KS
    Biochim Biophys Acta; 2014 Feb; 1840(2):847-75. PubMed ID: 23748139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotopic tagging of oxidized and reduced cysteines (iTORC) for detecting and quantifying sulfenic acids, disulfides, and free thiols in cells.
    Albertolle ME; Glass SM; Trefts E; Guengerich FP
    J Biol Chem; 2019 Apr; 294(16):6522-6530. PubMed ID: 30850396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Norbornene Probes for the Detection of Cysteine Sulfenic Acid in Cells.
    Alcock LJ; Oliveira BL; Deery MJ; Pukala TL; Perkins MV; Bernardes GJL; Chalker JM
    ACS Chem Biol; 2019 Apr; 14(4):594-598. PubMed ID: 30893551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue.
    Charles RL; Schröder E; May G; Free P; Gaffney PR; Wait R; Begum S; Heads RJ; Eaton P
    Mol Cell Proteomics; 2007 Sep; 6(9):1473-84. PubMed ID: 17569890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple and effective strategy for labeling cysteine sulfenic acid in proteins by utilization of β-ketoesters as cleavable probes.
    Qian J; Wani R; Klomsiri C; Poole LB; Tsang AW; Furdui CM
    Chem Commun (Camb); 2012 Apr; 48(34):4091-3. PubMed ID: 22430672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Mediated Sulfenic Acid Generation from Photocaged Cysteine Sulfoxide.
    Pan J; Carroll KS
    Org Lett; 2015 Dec; 17(24):6014-7. PubMed ID: 26641493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using DCP-Rho1 as a fluorescent probe to visualize sulfenic acid-containing proteins in living plant cells.
    Lara-Rojas F; Sarmiento-López LG; Pascual-Morales E; Ryken SE; Bezanilla M; Cardenas L
    Methods Enzymol; 2023; 683():291-308. PubMed ID: 37087193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triphenylphosphonium-Derived Protein Sulfenic Acid Trapping Agents: Synthesis, Reactivity, and Effect on Mitochondrial Function.
    Li Z; Forshaw TE; Holmila RJ; Vance SA; Wu H; Poole LB; Furdui CM; King SB
    Chem Res Toxicol; 2019 Mar; 32(3):526-534. PubMed ID: 30784263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical evaluation of probes for cysteine sulfenic acid.
    Pople JMM; Chalker JM
    Curr Opin Chem Biol; 2021 Feb; 60():55-65. PubMed ID: 32866852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics.
    Hugo M; Turell L; Manta B; Botti H; Monteiro G; Netto LE; Alvarez B; Radi R; Trujillo M
    Biochemistry; 2009 Oct; 48(40):9416-26. PubMed ID: 19737009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global, in situ, site-specific analysis of protein S-sulfenylation.
    Yang J; Gupta V; Tallman KA; Porter NA; Carroll KS; Liebler DC
    Nat Protoc; 2015 Jul; 10(7):1022-37. PubMed ID: 26086405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.