These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 18030997)

  • 1. Influence of anomeric configuration on mechanochemical degradation of polysaccharides: cellulose versus amylose.
    Striegel AM
    Biomacromolecules; 2007 Dec; 8(12):3944-9. PubMed ID: 18030997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversed-phase liquid chromatographic enantioseparation by cycloalkylcarboxylates of cellulose and amylose.
    Kubota T; Yamamoto C; Okamoto Y
    Chirality; 2004 May; 16(5):309-13. PubMed ID: 15069661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of methylation on the stability and solvation free energy of amylose and cellulose fragments: a molecular dynamics study.
    Yu H; Amann M; Hansson T; Köhler J; Wich G; van Gunsteren WF
    Carbohydr Res; 2004 Jul; 339(10):1697-709. PubMed ID: 15220079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates.
    Ten LN; Im WT; Kim MK; Kang MS; Lee ST
    J Microbiol Methods; 2004 Mar; 56(3):375-82. PubMed ID: 14967229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supermolecular structure of cellulose/amylose blends prepared from aqueous NaOH solutions and effects of amylose on structural formation of cellulose from its solution.
    Miyamoto H; Ago M; Yamane C; Seguchi M; Ueda K; Okajima K
    Carbohydr Res; 2011 May; 346(6):807-14. PubMed ID: 21392738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of backbone and side chain on the molecular environments of chiral cavities in polysaccharide-based biopolymers.
    Kasat RB; Wang NH; Franses EI
    Biomacromolecules; 2007 May; 8(5):1676-85. PubMed ID: 17439279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of (1-->3)- and (1-->4)-linkages of fully sulfated polysaccharides on their anticoagulant activity.
    Chaidedgumjorn A; Toyoda H; Woo ER; Lee KB; Kim YS; Toida T; Imanari T
    Carbohydr Res; 2002 May; 337(10):925-33. PubMed ID: 12007475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoenzymatic synthesis of amylose-grafted cellulose.
    Omagari Y; Matsuda S; Kaneko Y; Kadokawa J
    Macromol Biosci; 2009 May; 9(5):450-5. PubMed ID: 19040221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear Overhauser effect spectroscopy (NOESY) detection of the specific interaction between substituents in cellulose and amylose triacetates.
    Tezuka Y
    Biopolymers; 1994 Nov; 34(11):1477-81. PubMed ID: 7827261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of high-molecular-weight amylose in Alzheimer's disease brains.
    Huang L; Hollingsworth RI; Castellani R; Zipser B
    Glycobiology; 2004 May; 14(5):409-16. PubMed ID: 14718371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of polysaccharide-based chiral stationary phases for resolution of different compound classes.
    Aboul-Enein HY; Ali I
    Methods Mol Biol; 2004; 243():183-96. PubMed ID: 14970621
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of chain architecture on the mechanochemical degradation of macromolecules.
    Striegel AM
    J Biochem Biophys Methods; 2003 Jun; 56(1-3):117-39. PubMed ID: 12834972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single molecular pair interactions between hydrophobically modified hydroxyethyl cellulose and amylose determined by dynamic force spectroscopy.
    Takemasa M; Sletmoen M; Stokke BT
    Langmuir; 2009 Sep; 25(17):10174-82. PubMed ID: 19496550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new model for the substitution patterns in the polymer chain of polysaccharide derivatives.
    Mischnick P; Hennig C
    Biomacromolecules; 2001; 2(1):180-4. PubMed ID: 11749170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of starch by size-exclusion chromatography: the limitations imposed by shear scission.
    Cave RA; Seabrook SA; Gidley MJ; Gilbert RG
    Biomacromolecules; 2009 Aug; 10(8):2245-53. PubMed ID: 19627139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Packing analysis of carbohydrates and polysaccharides. IV. A new method for detailed crystal structure refinement of polysaccharides and its application to V-amylose.
    Zugenmaier P; Sarko A
    Biopolymers; 1976 Nov; 15(11):2121-36. PubMed ID: 990398
    [No Abstract]   [Full Text] [Related]  

  • 17. Fingerprinting polysaccharides with single-molecule atomic force microscopy.
    Marszalek PE; Li H; Fernandez JM
    Nat Biotechnol; 2001 Mar; 19(3):258-62. PubMed ID: 11231560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosidic linkage rotations determine amylose stretching mechanism.
    Kuttel M; Naidoo KJ
    J Am Chem Soc; 2005 Jan; 127(1):12-3. PubMed ID: 15631424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-exclusion chromatography of enzymatically treated cellulose and related polysaccharides: a review.
    Eremeeva T
    J Biochem Biophys Methods; 2003 Jun; 56(1-3):253-64. PubMed ID: 12834981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double helix formation from non-natural amylose analog polysaccharides.
    Yui T; Uto T; Nakauchida T; Yamamoto K; Kadokawa JI
    Carbohydr Polym; 2018 Jun; 189():184-189. PubMed ID: 29580397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.