These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18031263)

  • 1. New parameters controlling the effect of temperature on enzyme activity.
    Daniel RM; Danson MJ; Eisenthal R; Lee CK; Peterson ME
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1543-6. PubMed ID: 18031263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dependence of enzyme activity on temperature: determination and validation of parameters.
    Peterson ME; Daniel RM; Danson MJ; Eisenthal R
    Biochem J; 2007 Mar; 402(2):331-7. PubMed ID: 17092210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thermal behaviour of enzyme activity: implications for biotechnology.
    Eisenthal R; Peterson ME; Daniel RM; Danson MJ
    Trends Biotechnol; 2006 Jul; 24(7):289-92. PubMed ID: 16759724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eurythermalism and the temperature dependence of enzyme activity.
    Lee CK; Daniel RM; Shepherd C; Saul D; Cary SC; Danson MJ; Eisenthal R; Peterson ME
    FASEB J; 2007 Jun; 21(8):1934-41. PubMed ID: 17341686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of temperature on enzyme activity: new insights and their implications.
    Daniel RM; Danson MJ; Eisenthal R; Lee CK; Peterson ME
    Extremophiles; 2008 Jan; 12(1):51-9. PubMed ID: 17849082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular basis of the effect of temperature on enzyme activity.
    Daniel RM; Peterson ME; Danson MJ; Price NC; Kelly SM; Monk CR; Weinberg CS; Oudshoorn ML; Lee CK
    Biochem J; 2009 Dec; 425(2):353-60. PubMed ID: 19849667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of enzyme thermal parameters for rational enzyme engineering and environmental/evolutionary studies.
    Lee CK; Monk CR; Daniel RM
    Methods Mol Biol; 2013; 996():219-30. PubMed ID: 23504427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new understanding of how temperature affects the catalytic activity of enzymes.
    Daniel RM; Danson MJ
    Trends Biochem Sci; 2010 Oct; 35(10):584-91. PubMed ID: 20554446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new intrinsic thermal parameter for enzymes reveals true temperature optima.
    Peterson ME; Eisenthal R; Danson MJ; Spence A; Daniel RM
    J Biol Chem; 2004 May; 279(20):20717-22. PubMed ID: 14973131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of protein conformational stability and integrity using calorimetry and FT-Raman spectroscopy correlated with enzymatic activity.
    Elkordy AA; Forbes RT; Barry BW
    Eur J Pharm Sci; 2008 Feb; 33(2):177-90. PubMed ID: 18207710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and the catalytic activity of enzymes: a fresh understanding.
    Daniel RM; Danson MJ
    FEBS Lett; 2013 Sep; 587(17):2738-43. PubMed ID: 23810865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of irreversible thermal protein denaturation at varying temperature. II. The complete kinetic model of Lumry and Eyring.
    Lyubarev AE; Kurganov BI
    Biochemistry (Mosc); 1999 Jul; 64(7):832-8. PubMed ID: 10424909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes.
    Zale SE; Klibanov AM
    Biotechnol Bioeng; 1983 Sep; 25(9):2221-30. PubMed ID: 18574817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fructose-2,6-bisphosphate counteracts guanidinium chloride-, thermal-, and ATP-induced dissociation of skeletal muscle key glycolytic enzyme 6-phosphofructo-1-kinase: A structural mechanism for PFK allosteric regulation.
    Zancan P; Almeida FV; Faber-Barata J; Dellias JM; Sola-Penna M
    Arch Biochem Biophys; 2007 Nov; 467(2):275-82. PubMed ID: 17923106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimalist active-site redesign: teaching old enzymes new tricks.
    Toscano MD; Woycechowsky KJ; Hilvert D
    Angew Chem Int Ed Engl; 2007; 46(18):3212-36. PubMed ID: 17450624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperthermophilic enzymes--stability, activity and implementation strategies for high temperature applications.
    Unsworth LD; van der Oost J; Koutsopoulos S
    FEBS J; 2007 Aug; 274(16):4044-56. PubMed ID: 17683334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold adaptation of enzyme reaction rates.
    Bjelic S; Brandsdal BO; Aqvist J
    Biochemistry; 2008 Sep; 47(38):10049-57. PubMed ID: 18759500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simplified and computerizable regulatory enzyme model.
    Boninsegna A; Baggio C; Scutari G
    Boll Soc Ital Biol Sper; 1983 Nov; 59(11):1596-602. PubMed ID: 6667304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational engineering of enzyme stability.
    Eijsink VG; Bjørk A; Gåseidnes S; Sirevåg R; Synstad B; van den Burg B; Vriend G
    J Biotechnol; 2004 Sep; 113(1-3):105-20. PubMed ID: 15380651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.