These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 18031270)
1. Insight into stability of CotA laccase from the spore coat of Bacillus subtilis. Melo EP; Fernandes AT; Durão P; Martins LO Biochem Soc Trans; 2007 Dec; 35(Pt 6):1579-82. PubMed ID: 18031270 [TBL] [Abstract][Full Text] [Related]
2. Proximal mutations at the type 1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants. Durão P; Chen Z; Silva CS; Soares CM; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Biochem J; 2008 Jun; 412(2):339-46. PubMed ID: 18307408 [TBL] [Abstract][Full Text] [Related]
3. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Chen Z; Durão P; Silva CS; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Dalton Trans; 2010 Mar; 39(11):2875-82. PubMed ID: 20200715 [TBL] [Abstract][Full Text] [Related]
4. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. Durão P; Bento I; Fernandes AT; Melo EP; Lindley PF; Martins LO J Biol Inorg Chem; 2006 Jun; 11(4):514-26. PubMed ID: 16680453 [TBL] [Abstract][Full Text] [Related]
5. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Gupta N; Farinas ET Protein Eng Des Sel; 2010 Aug; 23(8):679-82. PubMed ID: 20551082 [TBL] [Abstract][Full Text] [Related]
6. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change. Tang L; van Merode AE; Lutje Spelberg JH; Fraaije MW; Janssen DB Biochemistry; 2003 Dec; 42(47):14057-65. PubMed ID: 14636074 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of a bacterial laccase thermostability through directed mutagenesis of a surface loop. Mollania N; Khajeh K; Ranjbar B; Hosseinkhani S Enzyme Microb Technol; 2011 Oct; 49(5):446-52. PubMed ID: 22112616 [TBL] [Abstract][Full Text] [Related]
8. The removal of a disulfide bridge in CotA-laccase changes the slower motion dynamics involved in copper binding but has no effect on the thermodynamic stability. Fernandes AT; Pereira MM; Silva CS; Lindley PF; Bento I; Melo EP; Martins LO J Biol Inorg Chem; 2011 Apr; 16(4):641-51. PubMed ID: 21369750 [TBL] [Abstract][Full Text] [Related]
9. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Cho EA; Seo J; Lee DW; Pan JG Enzyme Microb Technol; 2011 Jun; 49(1):100-4. PubMed ID: 22112278 [TBL] [Abstract][Full Text] [Related]
10. The role of Asp116 in the reductive cleavage of dioxygen to water in CotA laccase: assistance during the proton-transfer mechanism. Silva CS; Damas JM; Chen Z; Brissos V; Martins LO; Soares CM; Lindley PF; Bento I Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):186-93. PubMed ID: 22281748 [TBL] [Abstract][Full Text] [Related]
11. Bacillus subtilis spore display of laccase for evolution under extreme conditions of high concentrations of organic solvent. Jia H; Lee FS; Farinas ET ACS Comb Sci; 2014 Dec; 16(12):665-9. PubMed ID: 25392937 [TBL] [Abstract][Full Text] [Related]
12. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. Martins LO; Soares CM; Pereira MM; Teixeira M; Costa T; Jones GH; Henriques AO J Biol Chem; 2002 May; 277(21):18849-59. PubMed ID: 11884407 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a mutant Bacillus subtilis adenylosuccinate lyase equivalent to a mutant enzyme found in human adenylosuccinate lyase deficiency: asparagine 276 plays an important structural role. Palenchar JB; Colman RF Biochemistry; 2003 Feb; 42(7):1831-41. PubMed ID: 12590570 [TBL] [Abstract][Full Text] [Related]
14. Enhancement in catalytic activity of CotA-laccase from Bacillus pumilus W3 via site-directed mutagenesis. Xu KZ; Wang HR; Wang YJ; Xia J; Ma H; Cai YJ; Liao XR; Guan ZB J Biosci Bioeng; 2020 Apr; 129(4):405-411. PubMed ID: 31672431 [TBL] [Abstract][Full Text] [Related]
16. Spore-coat laccase CotA from Bacillus subtilis: crystallization and preliminary X-ray characterization by the MAD method. Enguita FJ; Matias PM; Martins LO; Plácido D; Henriques AO; Carrondo MA Acta Crystallogr D Biol Crystallogr; 2002 Sep; 58(Pt 9):1490-3. PubMed ID: 12198312 [TBL] [Abstract][Full Text] [Related]
17. Bilirubin oxidase activity of Bacillus subtilis CotA. Sakasegawa S; Ishikawa H; Imamura S; Sakuraba H; Goda S; Ohshima T Appl Environ Microbiol; 2006 Jan; 72(1):972-5. PubMed ID: 16391148 [TBL] [Abstract][Full Text] [Related]
18. Expression system of CotA-laccase for directed evolution and high-throughput screenings for the oxidation of high-redox potential dyes. Brissos V; Pereira L; Munteanu FD; Cavaco-Paulo A; Martins LO Biotechnol J; 2009 Apr; 4(4):558-63. PubMed ID: 19156728 [TBL] [Abstract][Full Text] [Related]
19. The kinetic role of carboxylate residues in the proximity of the trinuclear centre in the O2 reactivity of CotA-laccase. Brissos V; Chen Z; Martins LO Dalton Trans; 2012 May; 41(20):6247-55. PubMed ID: 22481612 [TBL] [Abstract][Full Text] [Related]
20. Unfolding pathway of CotA-laccase and the role of copper on the prevention of refolding through aggregation of the unfolded state. Fernandes AT; Lopes C; Martins LO; Melo EP Biochem Biophys Res Commun; 2012 Jun; 422(3):442-6. PubMed ID: 22579799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]