BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18031347)

  • 1. Identification in the mould Hypocrea jecorina of a gene encoding an NADP(+): d-xylose dehydrogenase.
    Berghäll S; Hilditch S; Penttilä M; Richard P
    FEMS Microbiol Lett; 2007 Dec; 277(2):249-53. PubMed ID: 18031347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-xylose metabolism in Hypocrea jecorina: loss of the xylitol dehydrogenase step can be partially compensated for by lad1-encoded L-arabinitol-4-dehydrogenase.
    Seiboth B; Hartl L; Pail M; Kubicek CP
    Eukaryot Cell; 2003 Oct; 2(5):867-75. PubMed ID: 14555469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification in the mold Hypocrea jecorina of the first fungal D-galacturonic acid reductase.
    Kuorelahti S; Kalkkinen N; Penttilä M; Londesborough J; Richard P
    Biochemistry; 2005 Aug; 44(33):11234-40. PubMed ID: 16101307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for beta-galactosidase and cellulase induction by lactose.
    Seiboth B; Gamauf C; Pail M; Hartl L; Kubicek CP
    Mol Microbiol; 2007 Nov; 66(4):890-900. PubMed ID: 17924946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-arabitol is the actual inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei).
    Mach-Aigner AR; Gudynaite-Savitch L; Mach RL
    Appl Environ Microbiol; 2011 Sep; 77(17):5988-94. PubMed ID: 21742908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D-Xylose as a repressor or inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei).
    Mach-Aigner AR; Pucher ME; Mach RL
    Appl Environ Microbiol; 2010 Mar; 76(6):1770-6. PubMed ID: 20097821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The missing link in the fungal D-galacturonate pathway: identification of the L-threo-3-deoxy-hexulosonate aldolase.
    Hilditch S; Berghäll S; Kalkkinen N; Penttilä M; Richard P
    J Biol Chem; 2007 Sep; 282(36):26195-201. PubMed ID: 17609199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous xylose pathway in Saccharomyces cerevisiae.
    Toivari MH; Salusjärvi L; Ruohonen L; Penttilä M
    Appl Environ Microbiol; 2004 Jun; 70(6):3681-6. PubMed ID: 15184173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymes for the NADPH-dependent reduction of dihydroxyacetone and D-glyceraldehyde and L-glyceraldehyde in the mould Hypocrea jecorina.
    Liepins J; Kuorelahti S; Penttilä M; Richard P
    FEBS J; 2006 Sep; 273(18):4229-35. PubMed ID: 16930134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a gene coding for a deglycosylating enzyme in Hypocrea jecorina.
    Stals I; Samyn B; Sergeant K; White T; Hoorelbeke K; Coorevits A; Devreese B; Claeyssens M; Piens K
    FEMS Microbiol Lett; 2010 Feb; 303(1):9-17. PubMed ID: 20015338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The missing link in the fungal L-arabinose catabolic pathway, identification of the L-xylulose reductase gene.
    Richard P; Putkonen M; Väänänen R; Londesborough J; Penttilä M
    Biochemistry; 2002 May; 41(20):6432-7. PubMed ID: 12009906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylitol production by recombinant Saccharomyces cerevisiae.
    Hallborn J; Walfridsson M; Airaksinen U; Ojamo H; Hahn-Hägerdal B; Penttilä M; Keräsnen S
    Biotechnology (N Y); 1991 Nov; 9(11):1090-5. PubMed ID: 1367625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase.
    Jeong EY; Sopher C; Kim IS; Lee H
    Yeast; 2001 Aug; 18(11):1081-9. PubMed ID: 11481678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular regulation of arabinan and L-arabinose metabolism in Hypocrea jecorina (Trichoderma reesei).
    Akel E; Metz B; Seiboth B; Kubicek CP
    Eukaryot Cell; 2009 Dec; 8(12):1837-44. PubMed ID: 19801419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H
    Kim H; Lee HS; Park H; Lee DH; Boles E; Chung D; Park YC
    Enzyme Microb Technol; 2017 Dec; 107():7-14. PubMed ID: 28899489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The metabolic role and evolution of L-arabinitol 4-dehydrogenase of Hypocrea jecorina.
    Pail M; Peterbauer T; Seiboth B; Hametner C; Druzhinina I; Kubicek CP
    Eur J Biochem; 2004 May; 271(10):1864-72. PubMed ID: 15128296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.