These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 18031682)

  • 1. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines.
    Xie Z; Srivastava DP; Photowala H; Kai L; Cahill ME; Woolfrey KM; Shum CY; Surmeier DJ; Penzes P
    Neuron; 2007 Nov; 56(4):640-56. PubMed ID: 18031682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination of synaptic adhesion with dendritic spine remodeling by AF-6 and kalirin-7.
    Xie Z; Photowala H; Cahill ME; Srivastava DP; Woolfrey KM; Shum CY; Huganir RL; Penzes P
    J Neurosci; 2008 Jun; 28(24):6079-91. PubMed ID: 18550750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffold protein X11α interacts with kalirin-7 in dendrites and recruits it to Golgi outposts.
    Jones KA; Eng AG; Raval P; Srivastava DP; Penzes P
    J Biol Chem; 2014 Dec; 289(51):35517-29. PubMed ID: 25378388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The guanine nucleotide exchange factor (GEF) Asef2 promotes dendritic spine formation via Rac activation and spinophilin-dependent targeting.
    Evans JC; Robinson CM; Shi M; Webb DJ
    J Biol Chem; 2015 Apr; 290(16):10295-308. PubMed ID: 25750125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1.
    Hayashi-Takagi A; Takaki M; Graziane N; Seshadri S; Murdoch H; Dunlop AJ; Makino Y; Seshadri AJ; Ishizuka K; Srivastava DP; Xie Z; Baraban JM; Houslay MD; Tomoda T; Brandon NJ; Kamiya A; Yan Z; Penzes P; Sawa A
    Nat Neurosci; 2010 Mar; 13(3):327-32. PubMed ID: 20139976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP.
    Araki Y; Zeng M; Zhang M; Huganir RL
    Neuron; 2015 Jan; 85(1):173-189. PubMed ID: 25569349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kalirin loss results in cortical morphological alterations.
    Xie Z; Cahill ME; Penzes P
    Mol Cell Neurosci; 2010 Jan; 43(1):81-9. PubMed ID: 19800004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity.
    Lemtiri-Chlieh F; Zhao L; Kiraly DD; Eipper BA; Mains RE; Levine ES
    BMC Neurosci; 2011 Dec; 12():126. PubMed ID: 22182308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal Protein Kinase Mζ Regulates α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Trafficking and Dendritic Spine Plasticity via Kalirin-7 in the Pathogenesis of Remifentanil-induced Postincisional Hyperalgesia in Rats.
    Zhang L; Guo S; Zhao Q; Li Y; Song C; Wang C; Yu Y; Wang G
    Anesthesiology; 2018 Jul; 129(1):173-186. PubMed ID: 29578864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Tiam1/Rac1 activation in hippocampal and cortical neurons mediates differential spine shrinkage in response to oxygen/glucose deprivation.
    Blanco-Suárez E; Fiuza M; Liu X; Chakkarapani E; Hanley JG
    J Cereb Blood Flow Metab; 2014 Dec; 34(12):1898-906. PubMed ID: 25248834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA receptor triggered molecular cascade underlies compression-induced rapid dendritic spine plasticity in cortical neurons.
    Chen LJ; Wang YJ; Chen JR; Tseng GF
    Exp Neurol; 2015 Apr; 266():86-98. PubMed ID: 25708984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP.
    Herring BE; Nicoll RA
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2264-9. PubMed ID: 26858404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Ca2+/calmodulin-dependent protein kinase II in dendritic spine remodeling during epileptiform activity in vitro.
    Zha XM; Dailey ME; Green SH
    J Neurosci Res; 2009 Jul; 87(9):1969-79. PubMed ID: 19235894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid functional maturation of nascent dendritic spines.
    Zito K; Scheuss V; Knott G; Hill T; Svoboda K
    Neuron; 2009 Jan; 61(2):247-58. PubMed ID: 19186167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics underlying synaptic gain between pairs of cortical pyramidal neurons.
    Pratt KG; Taft CE; Burbea M; Turrigiano GG
    Dev Neurobiol; 2008 Feb; 68(2):143-51. PubMed ID: 17948240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid 3D Enhanced Resolution Microscopy Reveals Diversity in Dendritic Spinule Dynamics, Regulation, and Function.
    Zaccard CR; Shapiro L; Martin-de-Saavedra MD; Pratt C; Myczek K; Song A; Forrest MP; Penzes P
    Neuron; 2020 Aug; 107(3):522-537.e6. PubMed ID: 32464088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterosynaptic molecular dynamics: locally induced propagating synaptic accumulation of CaM kinase II.
    Rose J; Jin SX; Craig AM
    Neuron; 2009 Feb; 61(3):351-8. PubMed ID: 19217373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines.
    Tolias KF; Bikoff JB; Burette A; Paradis S; Harrar D; Tavazoie S; Weinberg RJ; Greenberg ME
    Neuron; 2005 Feb; 45(4):525-38. PubMed ID: 15721239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between αCaMKII and GluN2B controls ERK-dependent plasticity.
    El Gaamouch F; Buisson A; Moustié O; Lemieux M; Labrecque S; Bontempi B; De Koninck P; Nicole O
    J Neurosci; 2012 Aug; 32(31):10767-79. PubMed ID: 22855824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular calcium stores mediate metaplasticity at hippocampal dendritic spines.
    Mahajan G; Nadkarni S
    J Physiol; 2019 Jul; 597(13):3473-3502. PubMed ID: 31099020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.