BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 18031750)

  • 1. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Fluid-solid coupling model and analysis on pulse wave propagation properties of iliac artery].
    Sun X; Li B; Lu Y; Miao F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Apr; 41(2):351-359. PubMed ID: 38686417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous mechanics of the mouse pulmonary arterial network.
    Lee P; Carlson BE; Chesler N; Olufsen MS; Qureshi MU; Smith NP; Sochi T; Beard DA
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1245-61. PubMed ID: 26792789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tube law parametrization using in vitro data for one-dimensional blood flow in arteries and veins: TUBE LAW PARAMETRIZATION IN ARTERIES AND VEINS.
    Colombo C; Siviglia A; Toro EF; Bia D; Zócalo Y; Müller LO
    Int J Numer Method Biomed Eng; 2024 Apr; 40(4):e3803. PubMed ID: 38363555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical assessment of time-domain methods for the estimation of local arterial pulse wave speed.
    Alastruey J
    J Biomech; 2011 Mar; 44(5):885-91. PubMed ID: 21211799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions.
    Valdez-Jasso D; Bia D; Zócalo Y; Armentano RL; Haider MA; Olufsen MS
    Ann Biomed Eng; 2011 May; 39(5):1438-56. PubMed ID: 21203846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signatures of obstructions and expansions in the arterial frequency response.
    Gerónimo JF; Alastruey J; Keramat A
    Comput Methods Programs Biomed; 2023 Oct; 240():107628. PubMed ID: 37336151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real wave propagation in the isotropic-relaxed micromorphic model.
    Neff P; Madeo A; Barbagallo G; d'Agostino MV; Abreu R; Ghiba ID
    Proc Math Phys Eng Sci; 2017 Jan; 473(2197):20160790. PubMed ID: 28265200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An anatomically detailed arterial-venous network model. Cerebral and coronary circulation.
    Müller LO; Watanabe SM; Toro EF; Feijóo RA; Blanco PJ
    Front Physiol; 2023; 14():1162391. PubMed ID: 37435309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arterial pulse wave modeling and analysis for vascular-age studies: a review from VascAgeNet.
    Alastruey J; Charlton PH; Bikia V; Paliakaite B; Hametner B; Bruno RM; Mulder MP; Vennin S; Piskin S; Khir AW; Guala A; Mayer CC; Mynard J; Hughes AD; Segers P; Westerhof BE
    Am J Physiol Heart Circ Physiol; 2023 Jul; 325(1):H1-H29. PubMed ID: 37000606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty Quantification in a Patient-Specific One-Dimensional Arterial Network Model: EnKF-Based Inflow Estimator.
    Arnold A; Battista C; Bia D; German YZ; Armentano RL; Tran H; Olufsen MS
    J Verif Valid Uncertain Quantif; 2017 Mar; 2(1):0110021-1100214. PubMed ID: 35832352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate.
    Lin CY; Chen YC; Lin CH; Chang KV
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35632006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arterial pulse wave propagation across stenoses and aneurysms: assessment of one-dimensional simulations against three-dimensional simulations and
    Jin W; Alastruey J
    J R Soc Interface; 2021 Apr; 18(177):20200881. PubMed ID: 33849337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The modified arterial reservoir: An update with consideration of asymptotic pressure (
    Hughes AD; Parker KH
    Proc Inst Mech Eng H; 2020 Nov; 234(11):1288-1299. PubMed ID: 32367773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Viscoelasticity on Arterial-Like Pulsatile Flow Dynamics and Energy.
    Elliott W; Guo D; Veldtman G; Tan W
    J Biomech Eng; 2020 Apr; 142(4):0410011-04100112. PubMed ID: 31523750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on low-dimensional physics-based models of systemic arteries: application to estimation of central aortic pressure.
    Zhou S; Xu L; Hao L; Xiao H; Yao Y; Qi L; Yao Y
    Biomed Eng Online; 2019 Apr; 18(1):41. PubMed ID: 30940144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A data-driven model to study utero-ovarian blood flow physiology during pregnancy.
    Carson J; Lewis M; Rassi D; Van Loon R
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1155-1176. PubMed ID: 30838498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness.
    Willemet M; Chowienczyk P; Alastruey J
    Am J Physiol Heart Circ Physiol; 2015 Aug; 309(4):H663-75. PubMed ID: 26055792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Method of Characteristics for One-Dimensional Blood Flow.
    Acosta S; Puelz C; Riviére B; Penny DJ; Rusin CG
    J Comput Phys; 2015 Aug; 294():96-109. PubMed ID: 25931614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arterial pressure and flow wave analysis using time-domain 1-D hemodynamics.
    Willemet M; Alastruey J
    Ann Biomed Eng; 2015 Jan; 43(1):190-206. PubMed ID: 25138163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.