BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 18032432)

  • 1. Two RNA editing sites with cis-acting elements of moderate sequence identity are recognized by an identical site-recognition protein in tobacco chloroplasts.
    Kobayashi Y; Matsuo M; Sakamoto K; Wakasugi T; Yamada K; Obokata J
    Nucleic Acids Res; 2008 Jan; 36(1):311-8. PubMed ID: 18032432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system.
    Hirose T; Sugiura M
    EMBO J; 2001 Mar; 20(5):1144-52. PubMed ID: 11230137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of RNA editing sites is directed by unique proteins in chloroplasts: biochemical identification of cis-acting elements and trans-acting factors involved in RNA editing in tobacco and pea chloroplasts.
    Miyamoto T; Obokata J; Sugiura M
    Mol Cell Biol; 2002 Oct; 22(19):6726-34. PubMed ID: 12215530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence elements critical for efficient RNA editing of a tobacco chloroplast transcript in vivo and in vitro.
    Hayes ML; Reed ML; Hegeman CE; Hanson MR
    Nucleic Acids Res; 2006; 34(13):3742-54. PubMed ID: 16893957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-competition in editing of chloroplast RNA transcripts in vitro implicates sharing of trans-factors between different C targets.
    Heller WP; Hayes ML; Hanson MR
    J Biol Chem; 2008 Mar; 283(12):7314-9. PubMed ID: 18192271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single alteration 20 nt 5' to an editing target inhibits chloroplast RNA editing in vivo.
    Reed ML; Peeters NM; Hanson MR
    Nucleic Acids Res; 2001 Apr; 29(7):1507-13. PubMed ID: 11266552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CURE-Chloroplast: a chloroplast C-to-U RNA editing predictor for seed plants.
    Du P; Jia L; Li Y
    BMC Bioinformatics; 2009 May; 10():135. PubMed ID: 19422723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA editing in plant organelles: machinery, physiological function and evolution.
    Shikanai T
    Cell Mol Life Sci; 2006 Mar; 63(6):698-708. PubMed ID: 16465445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a sequence motif critical for editing of a tobacco chloroplast transcript.
    Hayes ML; Hanson MR
    RNA; 2007 Feb; 13(2):281-8. PubMed ID: 17158709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA editing in hornwort chloroplasts makes more than half the genes functional.
    Kugita M; Yamamoto Y; Fujikawa T; Matsumoto T; Yoshinaga K
    Nucleic Acids Res; 2003 May; 31(9):2417-23. PubMed ID: 12711687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-mediated protection as the predominant mechanism for defining processed mRNA termini in land plant chloroplasts.
    Zhelyazkova P; Hammani K; Rojas M; Voelker R; Vargas-Suárez M; Börner T; Barkan A
    Nucleic Acids Res; 2012 Apr; 40(7):3092-105. PubMed ID: 22156165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cis Recognition elements in plant mitochondrion RNA editing.
    Farré JC; Leon G; Jordana X; Araya A
    Mol Cell Biol; 2001 Oct; 21(20):6731-7. PubMed ID: 11564858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional remodeling of RNA processing in replacement chloroplasts by pathways retained from their predecessors.
    Dorrell RG; Howe CJ
    Proc Natl Acad Sci U S A; 2012 Nov; 109(46):18879-84. PubMed ID: 23112181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple specificity recognition motifs enhance plant mitochondrial RNA editing in vitro.
    Verbitskiy D; van der Merwe JA; Zehrmann A; Brennicke A; Takenaka M
    J Biol Chem; 2008 Sep; 283(36):24374-81. PubMed ID: 18596040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of soybean trans-factors associated with plastid RNA editing sites.
    Rodrigues NF; Nogueira FCS; Domont GB; Margis R
    Genet Mol Biol; 2020; 43(1 suppl 2):e20190067. PubMed ID: 32459826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pentatricopeptide repeat proteins involved in plant organellar RNA editing.
    Yagi Y; Tachikawa M; Noguchi H; Satoh S; Obokata J; Nakamura T
    RNA Biol; 2013; 10(9):1419-25. PubMed ID: 23669716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empty pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize.
    Liu YJ; Xiu ZH; Meeley R; Tan BC
    Plant Cell; 2013 Mar; 25(3):868-83. PubMed ID: 23463776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pentatricopeptide repeat protein acts as a site-specificity factor at multiple RNA editing sites with unrelated cis-acting elements in plastids.
    Okuda K; Shikanai T
    Nucleic Acids Res; 2012 Jun; 40(11):5052-64. PubMed ID: 22362750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pentatricopeptide repeat protein OTP87 is essential for RNA editing of nad7 and atp1 transcripts in Arabidopsis mitochondria.
    Hammani K; des Francs-Small CC; Takenaka M; Tanz SK; Okuda K; Shikanai T; Brennicke A; Small I
    J Biol Chem; 2011 Jun; 286(24):21361-71. PubMed ID: 21504904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes.
    Salmans ML; Chaw SM; Lin CP; Shih AC; Wu YW; Mulligan RM
    Curr Genet; 2010 Oct; 56(5):439-46. PubMed ID: 20617318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.