These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 18032588)

  • 21. Evolutionary dynamics of retrotransposons assessed by high-throughput sequencing in wild relatives of wheat.
    Senerchia N; Wicker T; Felber F; Parisod C
    Genome Biol Evol; 2013; 5(5):1010-20. PubMed ID: 23595021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide De Novo Repeat Detection.
    Shi J; Liang C
    Plant Physiol; 2019 Aug; 180(4):1803-1815. PubMed ID: 31152127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice.
    Ma J; Devos KM; Bennetzen JL
    Genome Res; 2004 May; 14(5):860-9. PubMed ID: 15078861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Young, intact and nested retrotransposons are abundant in the onion and asparagus genomes.
    Vitte C; Estep MC; Leebens-Mack J; Bennetzen JL
    Ann Bot; 2013 Sep; 112(5):881-9. PubMed ID: 23887091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice.
    Wang H; Liu JS
    BMC Genomics; 2008 Aug; 9():382. PubMed ID: 18691433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific suppression of long terminal repeat retrotransposon mobilization in plants.
    Brestovitsky A; Iwasaki M; Cho J; Adulyanukosol N; Paszkowski J; Catoni M
    Plant Physiol; 2023 Apr; 191(4):2245-2255. PubMed ID: 36583226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three groups of transposable elements with contrasting copy number dynamics and host responses in the maize (Zea mays ssp. mays) genome.
    Diez CM; Meca E; Tenaillon MI; Gaut BS
    PLoS Genet; 2014 Apr; 10(4):e1004298. PubMed ID: 24743518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted deletion of rice retrotransposon Tos17 via CRISPR/Cas9.
    Saika H; Mori A; Endo M; Toki S
    Plant Cell Rep; 2019 Apr; 38(4):455-458. PubMed ID: 30465094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LTR retrotransposons reveal recent extensive inter-subspecies nonreciprocal recombination in Asian cultivated rice.
    Wang H; Xu Z; Yu H
    BMC Genomics; 2008 Nov; 9():565. PubMed ID: 19038031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome.
    Meyers BC; Tingey SV; Morgante M
    Genome Res; 2001 Oct; 11(10):1660-76. PubMed ID: 11591643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide characterization of nonreference transposons reveals evolutionary propensities of transposons in soybean.
    Tian Z; Zhao M; She M; Du J; Cannon SB; Liu X; Xu X; Qi X; Li MW; Lam HM; Ma J
    Plant Cell; 2012 Nov; 24(11):4422-36. PubMed ID: 23175746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Whole-genome variation of transposable element insertions in a maize diversity panel.
    Qiu Y; O'Connor CH; Della Coletta R; Renk JS; Monnahan PJ; Noshay JM; Liang Z; Gilbert A; Anderson SN; McGaugh SE; Springer NM; Hirsch CN
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34568911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolutionary Epigenomics of Retrotransposon-Mediated Methylation Spreading in Rice.
    Choi JY; Purugganan MD
    Mol Biol Evol; 2018 Feb; 35(2):365-382. PubMed ID: 29126199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of active transposable elements and their new insertions in tuber propagated greater yam (Dioscorea alata).
    Panhwar SA; Wang D; Lin F; Wang Y; Liu M; Chen R; Huang Y; Wu W; Huang D; Xiao Y; Xia W
    BMC Genomics; 2024 Sep; 25(1):864. PubMed ID: 39285286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome.
    Baucom RS; Estill JC; Leebens-Mack J; Bennetzen JL
    Genome Res; 2009 Feb; 19(2):243-54. PubMed ID: 19029538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive analysis of the Xya riparia genome uncovers the dominance of DNA transposons, LTR/Gypsy elements, and their evolutionary dynamics.
    Khan H; Yuan H; Liu X; Nie Y; Majid M
    BMC Genomics; 2024 Jul; 25(1):687. PubMed ID: 38997681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster.
    Bergman CM; Bensasson D
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11340-5. PubMed ID: 17592135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transposable element annotation of the rice genome.
    Juretic N; Bureau TE; Bruskiewich RM
    Bioinformatics; 2004 Jan; 20(2):155-60. PubMed ID: 14734305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat.
    Charles M; Belcram H; Just J; Huneau C; Viollet A; Couloux A; Segurens B; Carter M; Huteau V; Coriton O; Appels R; Samain S; Chalhoub B
    Genetics; 2008 Oct; 180(2):1071-86. PubMed ID: 18780739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.