These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 18032819)

  • 1. A comparative study of the effect of hydrogen peroxide versus normal saline on the strength of the bone-cement interface.
    Guerin SR; MacNiochaill R; O'Reilly P; O'Byrne J; Kelly DJ
    Biomed Mater Eng; 2007; 17(6):379-86. PubMed ID: 18032819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen peroxide as an irrigation solution in arthroplasty - a potential contributing factor to the development of aseptic loosening.
    Guerin S; Harty J; Thompson N; Bryan K
    Med Hypotheses; 2006; 66(6):1142-5. PubMed ID: 16481122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified PMMA cements for a hydrolysis resistant metal-polymer interface in orthopaedic applications.
    Gbureck U; GrĂ¼bel S; Thull R; Barralet JE
    Acta Biomater; 2005 Nov; 1(6):671-6. PubMed ID: 16701848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of intrusion characteristics of low viscosity cement Simplex-P and Palacos cements in a bovine cancellous bone model.
    Rey RM; Paiement GD; McGann WM; Jasty M; Harrigan TP; Burke DW; Harris WH
    Clin Orthop Relat Res; 1987 Feb; (215):272-8. PubMed ID: 3802646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of antibiotic impregnation on the fatigue life of Simplex P and Palacos R acrylic bone cements, with and without centrifugation.
    Davies JP; O'Connor DO; Burke DW; Harris WH
    J Biomed Mater Res; 1989 Apr; 23(4):379-97. PubMed ID: 2708414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of a thin coating of polymethylmethacrylate on the torsional fatigue strength of the cement-metal interface.
    Davies JP; Singer G; Harris WH
    J Appl Biomater; 1992; 3(1):45-9. PubMed ID: 10147704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical aspects of degree of cement bonding and implant wedge effect.
    Yoon YS; Oxland TR; Hodgson AJ; Duncan CP; Masri BA; Choi D
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1141-7. PubMed ID: 18584929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed-mode failure strength of implant-cement interface specimens with varying surface roughness.
    Zelle J; Janssen D; Peeters S; Brouwer C; Verdonschot N
    J Biomech; 2011 Feb; 44(4):780-3. PubMed ID: 21074772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of negative pressure intrusion techniques of acetabular cementation in total hip arthroplasty.
    Niocaill RF; Guerin S; Bitton JR; Lennon AB; Prendergast PJ; Kenny P
    Acta Orthop Belg; 2008 Feb; 74(1):64-71. PubMed ID: 18411604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Penetration and shear strength of cement-bone interfaces in vivo.
    MacDonald W; Swarts E; Beaver R
    Clin Orthop Relat Res; 1993 Jan; (286):283-8. PubMed ID: 8425359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse-lavage brushing followed by hydrogen peroxide-gauze packing for bone-bed preparation in cemented total hip arthroplasty: a bovine model.
    Ackland DC; Yap V; Ackland ML; Williams JF; Hardidge A; de Steiger R
    J Orthop Surg (Hong Kong); 2009 Dec; 17(3):296-300. PubMed ID: 20065367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear properties of bilaminar polymethylmethacrylate cement mantles in revision hip joint arthroplasty.
    Weinrauch PC; Bell C; Wilson L; Goss B; Lutton C; Crawford RW
    J Arthroplasty; 2007 Apr; 22(3):394-403. PubMed ID: 17400096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical bond strength of the cement-tibial component interface in total knee arthroplasty.
    Pittman GT; Peters CL; Hines JL; Bachus KN
    J Arthroplasty; 2006 Sep; 21(6):883-8. PubMed ID: 16950044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of irrigating solutions on the strength of the cement-bone interface.
    Howells RJ; Salmon JM; McCullough KG
    Aust N Z J Surg; 1992 Mar; 62(3):215-8. PubMed ID: 1550507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cement brand and preparation effects cement-in-cement mantle shear strength.
    Holsgrove TP; Pentlow A; Spencer RF; Miles AW
    Hip Int; 2015; 25(1):67-71. PubMed ID: 25044271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on the effect of bone-cement interface with bone cement oscillator].
    Wang Y; Yan F; Song DC; Qu YL; Yang GF; Shi ZW; Gu WG; Song YB; Li DB; Wang CL
    Zhonghua Wai Ke Za Zhi; 2008 Mar; 46(6):431-3. PubMed ID: 18785577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone-cement interface strength in distal radii using two medullary canal preparation techniques: carbon dioxide jet cleaning versus syringed saline.
    Ravenscroft MJ; Charalambous CP; Mills SP; Woodruff MJ; Stanley JK
    Hand Surg; 2010; 15(2):95-8. PubMed ID: 20672396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of bleeding on the cement-bone interface. An experimental study.
    Majkowski RS; Bannister GC; Miles AW
    Clin Orthop Relat Res; 1994 Feb; (299):293-7. PubMed ID: 8119032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cement oscillation increases interlock strength at the cement-bone interface, with commentary.
    Wang Y; Han P; Gu W; Shi Z; Li D; Wang C
    Orthopedics; 2009 May; 32(5):325; discussion 325. PubMed ID: 19472963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the addition of methylene blue on the fatigue strength of Simplex P bone-cement.
    Davies JP; Harris WH
    J Appl Biomater; 1992; 3(2):81-5. PubMed ID: 10147706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.