These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18033363)

  • 21. Terahertz demonstrations of effectively two-dimensional photonic bandgap structures.
    Zhao Y; Grischkowsky D
    Opt Lett; 2006 May; 31(10):1534-6. PubMed ID: 16642163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing.
    Sun F; Fu Z; Wang C; Ding Z; Wang C; Tian H
    Appl Opt; 2017 May; 56(15):4363-4368. PubMed ID: 29047863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity.
    Ryu HY; Notomi M; Kim GH; Lee YH
    Opt Express; 2004 Apr; 12(8):1708-19. PubMed ID: 19474997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generalized scattering-matrix method for the analysis of two-dimensional photonic bandgap devices.
    Crocco L; Cuomo F; Isernia T
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):A12-22. PubMed ID: 17912283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals.
    Srinivasan K; Painter O
    Opt Express; 2003 Mar; 11(6):579-93. PubMed ID: 19461768
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monopole woodpile photonic crystal modes for light-matter interaction and optical trapping.
    Tang L; Yoshie T
    Opt Express; 2009 Feb; 17(3):1346-51. PubMed ID: 19188963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics of dielectric-band modified single-cell photonic crystal lasers.
    No YS; Ee HS; Kwon SH; Kim SK; Seo MK; Kang JH; Lee YH; Park HG
    Opt Express; 2009 Feb; 17(3):1679-90. PubMed ID: 19188999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory.
    Elnaggar SY; Tervo R; Mattar SM
    J Magn Reson; 2014 May; 242():57-66. PubMed ID: 24607823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of two stacked cylindrical dielectric resonators in a TE₁₀₂ microwave cavity for magnetic resonance spectroscopy.
    Mattar SM; Elnaggar SY
    J Magn Reson; 2011 Apr; 209(2):174-82. PubMed ID: 21300559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Image brightening in samples of high dielectric constant.
    Tropp J
    J Magn Reson; 2004 Mar; 167(1):12-24. PubMed ID: 14987593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic field enhancement and SERS in the effective mode volume picture.
    Maier SA
    Opt Express; 2006 Mar; 14(5):1957-64. PubMed ID: 19503526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of high-bandwidth one- and two-dimensional photonic bandgap dielectric structures at grazing incidence of light.
    Fekete J; Várallyay Z; Szipocs R
    Appl Opt; 2008 Oct; 47(29):5330-6. PubMed ID: 18846172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical surface edge Bloch modes: low-loss subwavelength-scale two-dimensional light localization.
    Su SY; Yoshie T
    Opt Lett; 2012 Nov; 37(21):4398-400. PubMed ID: 23114308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial modal control of two-dimensional photonic crystal Bragg lasers.
    Zhu L; Sun X; Derose GA; Scherer A; Yariv A
    Opt Lett; 2007 Aug; 32(16):2273-5. PubMed ID: 17700756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory.
    Elnaggar SY; Tervo R; Mattar SM
    J Magn Reson; 2014 Jan; 238():1-7. PubMed ID: 24246950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cooled, ultrahigh Q, sapphire dielectric resonators for low-noise, microwave signal generation.
    Driscoll MM; Haynes JT; Jelen RA; Weinert RW; Gavaler JR; Talvacchio J; Wagner GR; Zaki KA; Liang XP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):405-11. PubMed ID: 18267650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dielectric structures with bound modes for microcavity lasers.
    Visser PM; Allaart K; Lenstra D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056604. PubMed ID: 12059728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupled photonic crystal micro-cavities with ultra-low threshold power for stimulated Raman scattering.
    Liu Q; Ouyang Z; Albin S
    Opt Express; 2011 Feb; 19(5):4795-804. PubMed ID: 21369311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities.
    Zhang Y; McCutcheon MW; Burgess IB; Loncar M
    Opt Lett; 2009 Sep; 34(17):2694-6. PubMed ID: 19724535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.