These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18033403)

  • 1. Analytical description of spectral hole-burning effects in active semiconductors.
    Balle S
    Opt Lett; 2002 Nov; 27(21):1923-5. PubMed ID: 18033403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical theory of four-wave mixing in semiconductor amplifiers.
    Mecozzi A
    Opt Lett; 1994 Jun; 19(12):892-4. PubMed ID: 19844479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four-wave mixing in quantum dot semiconductor optical amplifiers.
    Flayyih AH; Al-Khursan AH
    Appl Opt; 2013 May; 52(14):3156-65. PubMed ID: 23669827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear pulse propagation in semiconductors: hole burning within a homogeneous line.
    Förstner J; Knorr A; Koch SW
    Phys Rev Lett; 2001 Jan; 86(3):476-9. PubMed ID: 11177859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavity standing-wave and gain compression coefficient in semiconductor lasers.
    Mecozzi A
    Opt Lett; 1994 May; 19(9):640-2. PubMed ID: 19844398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear pulse propagation in a quantum dot laser.
    Karni O; Capua A; Eisenstein G; Franke D; Kreissl J; Kuenzel H; Arsenijević D; Schmeckebier H; Stubenrauch M; Kleinert M; Bimberg D; Gilfert C; Reithmaier JP
    Opt Express; 2013 Mar; 21(5):5715-36. PubMed ID: 23482144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal.
    Ham BS; Shahriar MS; Hemmer PR
    Opt Lett; 1997 Aug; 22(15):1138-40. PubMed ID: 18185774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral signature of nonlinear effects in semiconductor optical amplifiers.
    Marculescu A; Dúill SÓ; Koos C; Freude W; Leuthold J
    Opt Express; 2017 Nov; 25(24):29526-29559. PubMed ID: 29220993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization dependence of non-linear gain compression factor in semiconductor optical amplifier.
    Philippe S; Bradley AL; Maldonado-Basilio R; Surre F; Kennedy BF; Landais P; Soto-Ortiz H
    Opt Express; 2008 Jun; 16(12):8641-8. PubMed ID: 18545577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guiding of laser modes based on self-pumped four-wave mixing in a semiconductor amplifier.
    Petersen P; Samsøe E; Jensen S; Andersen P
    Opt Express; 2005 May; 13(9):3340-7. PubMed ID: 19495236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistent optical hole-burning spectroscopy of nano-confined dye molecules in liquid at room temperature: Spectral narrowing due to a glassy state and extraordinary relaxation in a nano-cage.
    Murakami H
    J Chem Phys; 2018 Apr; 148(14):144505. PubMed ID: 29655335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent spectral-hole burning in the wide-gap semiconductor SiC doped with vanadium.
    Kummer R; Hecht C; Winnacker A
    Opt Lett; 1997 Jun; 22(12):916-8. PubMed ID: 18185705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.
    Ma S; Chen Z; Sun H; Dutta NK
    Opt Express; 2010 Mar; 18(7):6417-22. PubMed ID: 20389665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Line narrowing and hole burning within the homogeneous linewidth: a new wave-mixing effect in two-level systems.
    Förstner J; Knorr A; Lindberg M; Koch SW
    Opt Lett; 2002; 27(20):1830-2. PubMed ID: 18033377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoionization hole burning and nonlinear Zeeman effect in CaF(2):Sm(2+).
    Macfarlane RM; Shelby RM
    Opt Lett; 1984 Dec; 9(12):533-5. PubMed ID: 19721658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding laser stabilization using spectral hole burning.
    Julsgaard B; Walther A; Kröll S; Rippe L
    Opt Express; 2007 Sep; 15(18):11444-65. PubMed ID: 19547502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-field magneto-photoluminescence of semiconductor nanostructures.
    Hayne M; Bansal B
    Luminescence; 2012; 27(3):179-96. PubMed ID: 22419529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots.
    Peterson MD; Cass LC; Harris RD; Edme K; Sung K; Weiss EA
    Annu Rev Phys Chem; 2014; 65():317-39. PubMed ID: 24364916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous thermal excitation and relaxation in supercooled liquids.
    Weinstein S; Richert R
    J Chem Phys; 2005 Dec; 123(22):224506. PubMed ID: 16375488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening effect on the exciton mediated nonlinear optical susceptibility of semiconductor quantum dots.
    Bautista JE; Lyra ML; Lima RP
    Opt Express; 2014 Nov; 22(23):28270-5. PubMed ID: 25402068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.