These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 18033497)

  • 1. Resonantly enhanced real hyperpolarizability.
    Meshulam G; Berkovic G; Kotler Z
    Opt Lett; 2001 Jan; 26(1):30-2. PubMed ID: 18033497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of resonant and nonresonant third-order nonlinearities of organic molecules by phase-conjugate interferometry.
    Tackx P; Kauranen M; Persoons A
    Opt Lett; 1994 Aug; 19(15):1113-5. PubMed ID: 19844547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonant Raman spectra and first molecular hyperpolarizabilities of strongly charge-transfer molecules.
    Hung ST; Wang CH; Kelley AM
    J Chem Phys; 2005 Oct; 123(14):144503. PubMed ID: 16238403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-photon resonant hyperpolarizability of an H-shaped molecule studied by wavelength-tunable hyper-Rayleigh scattering.
    Zhu J; Lu C; Cui Y; Zhang C; Lu G
    J Chem Phys; 2010 Dec; 133(24):244503. PubMed ID: 21197998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inducing Resonant Interactions in Ultracold Atoms with a Modulated Magnetic Field.
    Smith DH
    Phys Rev Lett; 2015 Nov; 115(19):193002. PubMed ID: 26588376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing electronic coherences by combined two- and one-photon excitation in atomic vapors.
    Gaižauskas E; Pentaris D; Efthimiopoulos T; Vaičaitis V
    Opt Lett; 2013 Jan; 38(2):124-6. PubMed ID: 23454936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pure surface plasmon resonance enhancement of the first hyperpolarizability of gold core-silver shell nanoparticles.
    Abid JP; Nappa J; Girault HH; Brevet PF
    J Chem Phys; 2004 Dec; 121(24):12577-82. PubMed ID: 15606279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon photocurrent autocorrelation using intersubband transitions at nearly-resonant excitation.
    Schneider H; Maier T; Liu HC; Walther M
    Opt Express; 2008 Feb; 16(3):1523-8. PubMed ID: 18542228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental limits of all nonlinear-optical phenomena that are representable by a second-order nonlinear susceptibility.
    Kuzyk MG
    J Chem Phys; 2006 Oct; 125(15):154108. PubMed ID: 17059240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-wave-mixing interferometer.
    Tang N; Partanen JP
    Opt Lett; 1996 Aug; 21(15):1108-10. PubMed ID: 19876268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyper-Rayleigh and hyper-Raman scatterings with intermediate and two-photon resonances.
    Leng W; Kelley AM
    J Chem Phys; 2007 Oct; 127(16):164509. PubMed ID: 17979362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the hyperpolarizability tensor using external electromagnetic fields and nuclear placement.
    Watkins DS; Kuzyk MG
    J Chem Phys; 2009 Aug; 131(6):064110. PubMed ID: 19691381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nondegenerate four-wave-mixing measurements of a resonantly induced refractive-index grating in a Nd:YAG amplifier.
    Antipov OL; Kuzhelev AS; Chausov DV
    Opt Lett; 1998 Mar; 23(6):448-50. PubMed ID: 18084540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twisted π-system chromophores for all-optical switching.
    He GS; Zhu J; Baev A; Samoć M; Frattarelli DL; Watanabe N; Facchetti A; Ågren H; Marks TJ; Prasad PN
    J Am Chem Soc; 2011 May; 133(17):6675-80. PubMed ID: 21473593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular step in design of nonlinear optical materials: Effect of π...π stacking aggregation on hyperpolarizability.
    Suponitsky KY; Masunov AE
    J Chem Phys; 2013 Sep; 139(9):094310. PubMed ID: 24028120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent effects on the resonance Raman and hyper-Raman spectra and first hyperpolarizability of N,N-dipropyl-p-nitroaniline.
    Shoute LC; Helburn R; Kelley AM
    J Phys Chem A; 2007 Feb; 111(7):1251-8. PubMed ID: 17256826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basis set effects on the hyperpolarizability of CHCl3: Gaussian-type orbitals, numerical basis sets and real-space grids.
    Vila FD; Strubbe DA; Takimoto Y; Andrade X; Rubio A; Louie SG; Rehr JJ
    J Chem Phys; 2010 Jul; 133(3):034111. PubMed ID: 20649312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical Model for First Hyperpolarizability Dispersion Accounting for Both Homogeneous and Inhomogeneous Broadening Effects.
    Campo J; Wenseleers W; Hales JM; Makarov NS; Perry JW
    J Phys Chem Lett; 2012 Aug; 3(16):2248-52. PubMed ID: 26295778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are the triple surface plasmon resonances in Zn nanoparticles true?
    Amekura H; Shinotsuka H; Yoshikawa H
    Nanotechnology; 2017 Dec; 28(49):495712. PubMed ID: 29053111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots.
    Reigue A; Iles-Smith J; Lux F; Monniello L; Bernard M; Margaillan F; Lemaitre A; Martinez A; McCutcheon DPS; Mørk J; Hostein R; Voliotis V
    Phys Rev Lett; 2017 Jun; 118(23):233602. PubMed ID: 28644642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.