These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Mechanism for spherical dome and microvoid formation in polycarbonate using nanojoule femtosecond laser pulses. Meunier T; Villafranca AB; Bhardwaj R; Weck A Opt Lett; 2012 Aug; 37(15):3168-70. PubMed ID: 22859121 [TBL] [Abstract][Full Text] [Related]
6. Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses. Day D; Gu M Opt Express; 2005 Aug; 13(16):5939-46. PubMed ID: 19498600 [TBL] [Abstract][Full Text] [Related]
7. Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. Minoshima K; Kowalevicz AM; Hartl I; Ippen EP; Fujimoto JG Opt Lett; 2001 Oct; 26(19):1516-8. PubMed ID: 18049653 [TBL] [Abstract][Full Text] [Related]
8. Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses. Chen WJ; Eaton SM; Zhang H; Herman PR Opt Express; 2008 Jul; 16(15):11470-80. PubMed ID: 18648467 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of microlens arrays in polycarbonate with nanojoule energy femtosecond laser pulses. Meunier T; Villafranca AB; Bhardwaj R; Weck A Opt Lett; 2012 Oct; 37(20):4266-8. PubMed ID: 23073432 [TBL] [Abstract][Full Text] [Related]
10. Compact transient-grating self-referenced spectral interferometry for sub-nanojoule femtosecond pulse characterization. Shen X; Wang P; Liu J; Li R Appl Opt; 2017 Jan; 56(3):582-586. PubMed ID: 28157920 [TBL] [Abstract][Full Text] [Related]
11. Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification. Fernandez A; Fuji T; Poppe A; Fürbach A; Krausz F; Apolonski A Opt Lett; 2004 Jun; 29(12):1366-8. PubMed ID: 15233437 [TBL] [Abstract][Full Text] [Related]
12. Formation of void array inside transparent and absorptive glasses by femtosecond laser irradiation. Jang W; Kim D; Kim T; Moon A; Lim KS; Lee M; Sohn IB J Nanosci Nanotechnol; 2012 Jun; 12(6):4798-802. PubMed ID: 22905532 [TBL] [Abstract][Full Text] [Related]
13. Femtosecond laser-induced microstructures in glasses and applications in micro-optics. Qiu J Chem Rec; 2004; 4(1):50-8. PubMed ID: 15057868 [TBL] [Abstract][Full Text] [Related]
14. Analysis on volume grating induced by femtosecond laser pulses. Zhou K; Guo Z; Ding W; Liu S Opt Express; 2010 Jun; 18(13):13640-6. PubMed ID: 20588497 [TBL] [Abstract][Full Text] [Related]
15. Fiber delivery of femtosecond pulses from a Ti:sapphire laser. Clark SW; Ilday FO; Wise FW Opt Lett; 2001 Sep; 26(17):1320-2. PubMed ID: 18049595 [TBL] [Abstract][Full Text] [Related]
16. Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices. Giridhar MS; Seong K; Schülzgen A; Khulbe P; Peyghambarian N; Mansuripur M Appl Opt; 2004 Aug; 43(23):4584-9. PubMed ID: 15376436 [TBL] [Abstract][Full Text] [Related]
17. Properties of optical breakdown in BK7 glass induced by an extended-cavity femtosecond laser oscillator. Do BT; Phillips MC; Miller PA; Kimmel MW; Britsch J; Cho SH Opt Express; 2009 Feb; 17(4):2739-55. PubMed ID: 19219179 [TBL] [Abstract][Full Text] [Related]
18. Optical characteristics of femtosecond laser micromachined periodic structures in Si <100>. Elbandrawy M; Gupta MC Appl Opt; 2006 Sep; 45(27):7137-43. PubMed ID: 16946794 [TBL] [Abstract][Full Text] [Related]
19. Micromachining of Invar Foils with GHz, MHz and kHz Femtosecond Burst Modes. Butkus S; Jukna V; Paipulas D; Barkauskas M; Sirutkaitis V Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751113 [TBL] [Abstract][Full Text] [Related]
20. Femtosecond laser induced step-like structures inside transparent hydrogel due to laser induced threshold reduction. Saerchen E; Liedtke-Gruener S; Kopp M; Heisterkamp A; Lubatschowski H; Ripken T PLoS One; 2019; 14(9):e0222293. PubMed ID: 31527880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]