BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 18033576)

  • 1. Myxobacterial natural product assembly lines: fascinating examples of curious biochemistry.
    Wenzel SC; Müller R
    Nat Prod Rep; 2007 Dec; 24(6):1211-24. PubMed ID: 18033576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biosynthetic potential of myxobacteria and their impact in drug discovery.
    Wenzel SC; Müller R
    Curr Opin Drug Discov Devel; 2009 Mar; 12(2):220-30. PubMed ID: 19333867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic.
    Wenzel SC; Müller R
    Curr Opin Chem Biol; 2005 Oct; 9(5):447-58. PubMed ID: 16107321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-modular polyketide synthases in myxobacteria.
    Li Y; Müller R
    Phytochemistry; 2009; 70(15-16):1850-7. PubMed ID: 19586645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-linear enzymatic logic in natural product modular mega-synthases and -synthetases.
    Haynes SW; Challis GL
    Curr Opin Drug Discov Devel; 2007 Mar; 10(2):203-18. PubMed ID: 17436556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chapter 9. Synthetic probes for polyketide and nonribosomal peptide biosynthetic enzymes.
    Meier JL; Burkart MD
    Methods Enzymol; 2009; 458():219-54. PubMed ID: 19374985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics.
    Donadio S; Monciardini P; Sosio M
    Nat Prod Rep; 2007 Oct; 24(5):1073-109. PubMed ID: 17898898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Products of the iterative polyketide synthases in 9- and 10-membered enediyne biosynthesis.
    Sun H; Kong R; Zhu D; Lu M; Ji Q; Liew CW; Lescar J; Zhong G; Liang ZX
    Chem Commun (Camb); 2009 Dec; (47):7399-401. PubMed ID: 20024241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of genomics on the exploitation of the myxobacterial secondary metabolome.
    Wenzel SC; Müller R
    Nat Prod Rep; 2009 Nov; 26(11):1385-407. PubMed ID: 19844638
    [No Abstract]   [Full Text] [Related]  

  • 10. Analysis of myxobacterial secondary metabolism goes molecular.
    Bode HB; Müller R
    J Ind Microbiol Biotechnol; 2006 Jul; 33(7):577-88. PubMed ID: 16491362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites.
    Ansari MZ; Sharma J; Gokhale RS; Mohanty D
    BMC Bioinformatics; 2008 Oct; 9():454. PubMed ID: 18950525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of polyketides by trans-AT polyketide synthases.
    Piel J
    Nat Prod Rep; 2010 Jul; 27(7):996-1047. PubMed ID: 20464003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chapter 10 using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes.
    Sunbul M; Zhang K; Yin J
    Methods Enzymol; 2009; 458():255-75. PubMed ID: 19374986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and biosynthesis of sorangipyranone - a new γ-dihydropyrone from the myxobacterial strain MSr12020.
    Okoth DA; Hug JJ; Mándi A; Kurtán T; Garcia R; Müller R
    J Ind Microbiol Biotechnol; 2021 Jun; 48(3-4):. PubMed ID: 34003283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome mining for novel natural product discovery.
    Challis GL
    J Med Chem; 2008 May; 51(9):2618-28. PubMed ID: 18393407
    [No Abstract]   [Full Text] [Related]  

  • 16. Chapter 3. Discovering natural products from myxobacteria with emphasis on rare producer strains in combination with improved analytical methods.
    Garcia RO; Krug D; Müller R
    Methods Enzymol; 2009; 458():59-91. PubMed ID: 19374979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From genetic diversity to metabolic unity: studies on the biosynthesis of aurafurones and aurafuron-like structures in myxobacteria and streptomycetes.
    Frank B; Wenzel SC; Bode HB; Scharfe M; Blöcker H; Müller R
    J Mol Biol; 2007 Nov; 374(1):24-38. PubMed ID: 17919655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishing a new methodology for genome mining and biosynthesis of polyketides and peptides through yeast molecular genetics.
    Ishiuchi K; Nakazawa T; Ookuma T; Sugimoto S; Sato M; Tsunematsu Y; Ishikawa N; Noguchi H; Hotta K; Moriya H; Watanabe K
    Chembiochem; 2012 Apr; 13(6):846-54. PubMed ID: 22447505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection.
    Nguyen T; Ishida K; Jenke-Kodama H; Dittmann E; Gurgui C; Hochmuth T; Taudien S; Platzer M; Hertweck C; Piel J
    Nat Biotechnol; 2008 Feb; 26(2):225-33. PubMed ID: 18223641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterologous expression systems for polyketide synthases.
    Fujii I
    Nat Prod Rep; 2009 Feb; 26(2):155-69. PubMed ID: 19177221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.