These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 18033581)

  • 1. Enzymatic synthesis of cyclic triterpenes.
    Abe I
    Nat Prod Rep; 2007 Dec; 24(6):1311-31. PubMed ID: 18033581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships.
    Wu TK; Chang CH; Liu YT; Wang TT
    Chem Rec; 2008; 8(5):302-25. PubMed ID: 18956480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of the Gly600 residue of Alicyclobacillus acidocaldarius squalene cyclase alters the substrate specificity into that of the eukaryotic-type cyclase specific to (3S)-2,3-oxidosqualene.
    Hoshino T; Shimizu K; Sato T
    Angew Chem Int Ed Engl; 2004 Dec; 43(48):6700-3. PubMed ID: 15593147
    [No Abstract]   [Full Text] [Related]  

  • 4. Squalene cyclase and oxidosqualene cyclase from a fern.
    Shinozaki J; Shibuya M; Masuda K; Ebizuka Y
    FEBS Lett; 2008 Jan; 582(2):310-8. PubMed ID: 18154734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic cyclization of dioxidosqualene to heterocyclic triterpenes.
    Shan H; Segura MJ; Wilson WK; Lodeiro S; Matsuda SP
    J Am Chem Soc; 2005 Dec; 127(51):18008-9. PubMed ID: 16366544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profound insights into squalene cyclization.
    Poralla K
    Chem Biol; 2004 Jan; 11(1):12-4. PubMed ID: 15112988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concerted nature of AB ring formation in the enzymatic cyclization of squalene to hopenes.
    Hess BA; Smentek L
    Org Lett; 2004 May; 6(11):1717-20. PubMed ID: 15151397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An oxidosqualene cyclase makes numerous products by diverse mechanisms: a challenge to prevailing concepts of triterpene biosynthesis.
    Lodeiro S; Xiong Q; Wilson WK; Kolesnikova MD; Onak CS; Matsuda SP
    J Am Chem Soc; 2007 Sep; 129(36):11213-22. PubMed ID: 17705488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histidine residue at position 234 of oxidosqualene-lanosterol cyclase from saccharomyces cerevisiae simultaneously influences cyclization, rearrangement, and deprotonation reactions.
    Wu TK; Liu YT; Chang CH
    Chembiochem; 2005 Jul; 6(7):1177-81. PubMed ID: 15915534
    [No Abstract]   [Full Text] [Related]  

  • 10. Conversion of squalene to the pentacarbocyclic hopene.
    Reinert DJ; Balliano G; Schulz GE
    Chem Biol; 2004 Jan; 11(1):121-6. PubMed ID: 15113001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic formation of multiple triterpenes by mutation of tyrosine 510 of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae.
    Wu TK; Chang CH
    Chembiochem; 2004 Dec; 5(12):1712-5. PubMed ID: 15508118
    [No Abstract]   [Full Text] [Related]  

  • 12. Production of epoxydammaranes by the enzymatic reactions of (3R)- and (3S)-2,3-squalene diols and those of 2,3:22,23-dioxidosqualenes with recombinant squalene cyclase and the mechanistic insight into the polycyclization reactions.
    Hoshino T; Yonemura Y; Abe T; Sugino Y
    Org Biomol Chem; 2007 Mar; 5(5):792-801. PubMed ID: 17315066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme mechanisms for triterpene cyclization: new pieces of the puzzle.
    Wendt KU
    Angew Chem Int Ed Engl; 2005 Jun; 44(26):3966-71. PubMed ID: 15929157
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanism-based inhibitors and other active-site targeted inhibitors of oxidosqualene cyclase and squalene cyclase.
    Abe I; Zheng YF; Prestwich GD
    J Enzyme Inhib; 1998 Sep; 13(6):385-98. PubMed ID: 9825303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Access of the substrate to the active site of squalene and oxidosqualene cyclases: comparative inhibition, site-directed mutagenesis and homology-modelling studies.
    Oliaro-Bosso S; Schulz-Gasch T; Taramino S; Scaldaferri M; Viola F; Balliano G
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1202-5. PubMed ID: 16246081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution.
    Dang T; Prestwich GD
    Chem Biol; 2000 Aug; 7(8):643-9. PubMed ID: 11048954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic insights into oxidosqualene cyclizations through homology modeling.
    Schulz-Gasch T; Stahl M
    J Comput Chem; 2003 Apr; 24(6):741-53. PubMed ID: 12666166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New cyclization mechanism for squalene: a ring-expansion step for the five-membered C-ring intermediate in hopene biosynthesis.
    Hoshino T; Kouda M; Abe T; Ohashi S
    Biosci Biotechnol Biochem; 1999 Nov; 63(11):2038-41. PubMed ID: 10635573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Engineering of squalene cyclizing enzymes].
    Abe I
    Yakugaku Zasshi; 2008 Aug; 128(8):1109-18. PubMed ID: 18670176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis thaliana LUP1 converts oxidosqualene to multiple triterpene alcohols and a triterpene diol.
    Segura MJ; Meyer MM; Matsuda SP
    Org Lett; 2000 Jul; 2(15):2257-9. PubMed ID: 10930257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.