BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 18033581)

  • 1. Enzymatic synthesis of cyclic triterpenes.
    Abe I
    Nat Prod Rep; 2007 Dec; 24(6):1311-31. PubMed ID: 18033581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships.
    Wu TK; Chang CH; Liu YT; Wang TT
    Chem Rec; 2008; 8(5):302-25. PubMed ID: 18956480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of the Gly600 residue of Alicyclobacillus acidocaldarius squalene cyclase alters the substrate specificity into that of the eukaryotic-type cyclase specific to (3S)-2,3-oxidosqualene.
    Hoshino T; Shimizu K; Sato T
    Angew Chem Int Ed Engl; 2004 Dec; 43(48):6700-3. PubMed ID: 15593147
    [No Abstract]   [Full Text] [Related]  

  • 4. Squalene cyclase and oxidosqualene cyclase from a fern.
    Shinozaki J; Shibuya M; Masuda K; Ebizuka Y
    FEBS Lett; 2008 Jan; 582(2):310-8. PubMed ID: 18154734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic cyclization of dioxidosqualene to heterocyclic triterpenes.
    Shan H; Segura MJ; Wilson WK; Lodeiro S; Matsuda SP
    J Am Chem Soc; 2005 Dec; 127(51):18008-9. PubMed ID: 16366544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profound insights into squalene cyclization.
    Poralla K
    Chem Biol; 2004 Jan; 11(1):12-4. PubMed ID: 15112988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concerted nature of AB ring formation in the enzymatic cyclization of squalene to hopenes.
    Hess BA; Smentek L
    Org Lett; 2004 May; 6(11):1717-20. PubMed ID: 15151397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An oxidosqualene cyclase makes numerous products by diverse mechanisms: a challenge to prevailing concepts of triterpene biosynthesis.
    Lodeiro S; Xiong Q; Wilson WK; Kolesnikova MD; Onak CS; Matsuda SP
    J Am Chem Soc; 2007 Sep; 129(36):11213-22. PubMed ID: 17705488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histidine residue at position 234 of oxidosqualene-lanosterol cyclase from saccharomyces cerevisiae simultaneously influences cyclization, rearrangement, and deprotonation reactions.
    Wu TK; Liu YT; Chang CH
    Chembiochem; 2005 Jul; 6(7):1177-81. PubMed ID: 15915534
    [No Abstract]   [Full Text] [Related]  

  • 10. Conversion of squalene to the pentacarbocyclic hopene.
    Reinert DJ; Balliano G; Schulz GE
    Chem Biol; 2004 Jan; 11(1):121-6. PubMed ID: 15113001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic formation of multiple triterpenes by mutation of tyrosine 510 of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae.
    Wu TK; Chang CH
    Chembiochem; 2004 Dec; 5(12):1712-5. PubMed ID: 15508118
    [No Abstract]   [Full Text] [Related]  

  • 12. Production of epoxydammaranes by the enzymatic reactions of (3R)- and (3S)-2,3-squalene diols and those of 2,3:22,23-dioxidosqualenes with recombinant squalene cyclase and the mechanistic insight into the polycyclization reactions.
    Hoshino T; Yonemura Y; Abe T; Sugino Y
    Org Biomol Chem; 2007 Mar; 5(5):792-801. PubMed ID: 17315066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme mechanisms for triterpene cyclization: new pieces of the puzzle.
    Wendt KU
    Angew Chem Int Ed Engl; 2005 Jun; 44(26):3966-71. PubMed ID: 15929157
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanism-based inhibitors and other active-site targeted inhibitors of oxidosqualene cyclase and squalene cyclase.
    Abe I; Zheng YF; Prestwich GD
    J Enzyme Inhib; 1998 Sep; 13(6):385-98. PubMed ID: 9825303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Access of the substrate to the active site of squalene and oxidosqualene cyclases: comparative inhibition, site-directed mutagenesis and homology-modelling studies.
    Oliaro-Bosso S; Schulz-Gasch T; Taramino S; Scaldaferri M; Viola F; Balliano G
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1202-5. PubMed ID: 16246081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution.
    Dang T; Prestwich GD
    Chem Biol; 2000 Aug; 7(8):643-9. PubMed ID: 11048954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic insights into oxidosqualene cyclizations through homology modeling.
    Schulz-Gasch T; Stahl M
    J Comput Chem; 2003 Apr; 24(6):741-53. PubMed ID: 12666166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New cyclization mechanism for squalene: a ring-expansion step for the five-membered C-ring intermediate in hopene biosynthesis.
    Hoshino T; Kouda M; Abe T; Ohashi S
    Biosci Biotechnol Biochem; 1999 Nov; 63(11):2038-41. PubMed ID: 10635573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Engineering of squalene cyclizing enzymes].
    Abe I
    Yakugaku Zasshi; 2008 Aug; 128(8):1109-18. PubMed ID: 18670176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis thaliana LUP1 converts oxidosqualene to multiple triterpene alcohols and a triterpene diol.
    Segura MJ; Meyer MM; Matsuda SP
    Org Lett; 2000 Jul; 2(15):2257-9. PubMed ID: 10930257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.