BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18033812)

  • 1. Chloride conductance in the transverse tubular system of rat skeletal muscle fibres: importance in excitation-contraction coupling and fatigue.
    Dutka TL; Murphy RM; Stephenson DG; Lamb GD
    J Physiol; 2008 Feb; 586(3):875-87. PubMed ID: 18033812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.
    Nielsen OB; Ørtenblad N; Lamb GD; Stephenson DG
    J Physiol; 2004 May; 557(Pt 1):133-46. PubMed ID: 15034125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat.
    Posterino GS; Lamb GD; Stephenson DG
    J Physiol; 2000 Aug; 527 Pt 1(Pt 1):131-7. PubMed ID: 10944176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of low cytoplasmic [ATP] on excitation-contraction coupling in fast-twitch muscle fibres of the rat.
    Dutka TL; Lamb GD
    J Physiol; 2004 Oct; 560(Pt 2):451-68. PubMed ID: 15308682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sarcoplasmic reticulum Ca2+ content on action potential-induced Ca2+ release in rat skeletal muscle fibres.
    Posterino GS; Lamb GD
    J Physiol; 2003 Aug; 551(Pt 1):219-37. PubMed ID: 12844504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing chloride conductance prevents hyperkalaemia-induced loss of twitch force in rat slow-twitch muscle.
    van Emst MG; Klarenbeek S; Schot A; Plomp JJ; Doornenbal A; Everts ME
    J Physiol; 2004 Nov; 561(Pt 1):169-81. PubMed ID: 15345748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased excitability of acidified skeletal muscle: role of chloride conductance.
    Pedersen TH; de Paoli F; Nielsen OB
    J Gen Physiol; 2005 Feb; 125(2):237-46. PubMed ID: 15684096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additive protective effects of the addition of lactic acid and adrenaline on excitability and force in isolated rat skeletal muscle depressed by elevated extracellular K+.
    de Paoli FV; Overgaard K; Pedersen TH; Nielsen OB
    J Physiol; 2007 Jun; 581(Pt 2):829-39. PubMed ID: 17347268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation-induced exchange of Na+, K+, and Cl- in rat EDL muscle in vitro and in vivo: physiology and pathophysiology.
    Clausen T
    J Gen Physiol; 2013 Feb; 141(2):179-92. PubMed ID: 23319728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potassium-glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue.
    Cairns SP; Renaud JM
    J Physiol; 2023 Dec; 601(24):5669-5687. PubMed ID: 37934587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle.
    Lueck JD; Rossi AE; Thornton CA; Campbell KP; Dirksen RT
    J Gen Physiol; 2010 Dec; 136(6):597-613. PubMed ID: 21078869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous ion diffusion within skeletal muscle transverse tubule networks.
    Shorten PR; Soboleva TK
    Theor Biol Med Model; 2007 May; 4():18. PubMed ID: 17509153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitability properties of mouse and human skeletal muscle fibres compared by muscle velocity recovery cycles.
    Suetterlin KJ; Männikkö R; Matthews E; Greensmith L; Hanna MG; Bostock H; Tan SV
    Neuromuscul Disord; 2022 Apr; 32(4):347-357. PubMed ID: 35339342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium effects on skeletal muscle contraction: are potassium-metabolic interactions required for fatigue?
    Cairns SP
    Eur J Appl Physiol; 2023 Nov; 123(11):2341-2343. PubMed ID: 37728786
    [No Abstract]   [Full Text] [Related]  

  • 15. Skeletal muscle cells opto-stimulation by intramembrane molecular transducers.
    Venturino I; Vurro V; Bonfadini S; Moschetta M; Perotto S; Sesti V; Criante L; Bertarelli C; Lanzani G
    Commun Biol; 2023 Nov; 6(1):1148. PubMed ID: 37952040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complex nature of skeletal muscle fatigue: Understanding the interaction of metabolic stress and membrane excitability.
    Winther JB; Jakobsgaard JE
    J Physiol; 2024 May; 602(10):2157-2159. PubMed ID: 38654603
    [No Abstract]   [Full Text] [Related]  

  • 17. The temperature sensitivity of motor units in rat soleus.
    Malak B; Celichowski J; Drzymała-Celichowska H
    Sci Rep; 2024 Feb; 14(1):3070. PubMed ID: 38321022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ClC-1 Chloride Channel: Inputs on the Structure-Function Relationship of Myotonia Congenita-Causing Mutations.
    Brenes O; Pusch M; Morales F
    Biomedicines; 2023 Sep; 11(10):. PubMed ID: 37892996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise and fatigue: integrating the role of K
    Renaud JM; Ørtenblad N; McKenna MJ; Overgaard K
    Eur J Appl Physiol; 2023 Nov; 123(11):2345-2378. PubMed ID: 37584745
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.