BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 18033822)

  • 1. Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer.
    Whorton MR; Jastrzebska B; Park PS; Fotiadis D; Engel A; Palczewski K; Sunahara RK
    J Biol Chem; 2008 Feb; 283(7):4387-94. PubMed ID: 18033822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipids are needed for the proper formation, stability, and function of the photoactivated rhodopsin-transducin complex.
    Jastrzebska B; Goc A; Golczak M; Palczewski K
    Biochemistry; 2009 Jun; 48(23):5159-70. PubMed ID: 19413332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of rhodopsin in laterally structured supported membranes: observation of transducin activation with spatially and time-resolved surface plasmon resonance.
    Heyse S; Ernst OP; Dienes Z; Hofmann KP; Vogel H
    Biochemistry; 1998 Jan; 37(2):507-22. PubMed ID: 9425071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy.
    Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ
    Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein.
    Whorton MR; Bokoch MP; Rasmussen SG; Huang B; Zare RN; Kobilka B; Sunahara RK
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7682-7. PubMed ID: 17452637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptor-dependent G-protein activation in lipidic cubic phase.
    Navarro J; Landau EM; Fahmy K
    Biopolymers; 2002; 67(3):167-77. PubMed ID: 11979595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films.
    Salamon Z; Wang Y; Soulages JL; Brown MF; Tollin G
    Biophys J; 1996 Jul; 71(1):283-94. PubMed ID: 8804611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins.
    Bayburt TH; Leitz AJ; Xie G; Oprian DD; Sligar SG
    J Biol Chem; 2007 May; 282(20):14875-81. PubMed ID: 17395586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligomeric state of rhodopsin within rhodopsin-transducin complex probed with succinylated concanavalin A.
    Jastrzebska B
    Methods Mol Biol; 2015; 1271():221-33. PubMed ID: 25697527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.
    Gao Y; Westfield G; Erickson JW; Cerione RA; Skiniotis G; Ramachandran S
    J Biol Chem; 2017 Aug; 292(34):14280-14289. PubMed ID: 28655769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of the Rhodopsin-Transducin Complex into Lipid Nanodiscs.
    Gao Y; Erickson JW; Cerione RA; Ramachandran S
    Methods Mol Biol; 2019; 2009():317-324. PubMed ID: 31152414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of receptor-G protein coupling by bilayer lipid composition II: formation of metarhodopsin II-transducin complex.
    Niu SL; Mitchell DC; Litman BJ
    J Biol Chem; 2001 Nov; 276(46):42807-11. PubMed ID: 11544259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural studies of metarhodopsin II, the activated form of the G-protein coupled receptor, rhodopsin.
    Choi G; Landin J; Galan JF; Birge RR; Albert AD; Yeagle PL
    Biochemistry; 2002 Jun; 41(23):7318-24. PubMed ID: 12044163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of receptor-G protein coupling by bilayer lipid composition I: kinetics of rhodopsin-transducin binding.
    Mitchell DC; Niu SL; Litman BJ
    J Biol Chem; 2001 Nov; 276(46):42801-6. PubMed ID: 11544258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction network of rhodopsin involving the heterotrimeric G-protein transducin and the monomeric GTPase Rac1 is determined by distinct binding processes.
    Köster M; Dell'Orco D; Koch KW
    FEBS J; 2014 Dec; 281(23):5175-85. PubMed ID: 25243418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function.
    Jastrzebska B; Debinski A; Filipek S; Palczewski K
    Prog Lipid Res; 2011 Jul; 50(3):267-77. PubMed ID: 21435354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit.
    Ernst OP; Gramse V; Kolbe M; Hofmann KP; Heck M
    Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10859-64. PubMed ID: 17578920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional stability of rhodopsin in a bicelle system: evaluating G protein activation by rhodopsin in bicelles.
    Kaya AI; Iverson TM; Hamm HE
    Methods Mol Biol; 2015; 1271():67-76. PubMed ID: 25697517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling efficiency of rhodopsin and transducin in bicelles.
    Kaya AI; Thaker TM; Preininger AM; Iverson TM; Hamm HE
    Biochemistry; 2011 Apr; 50(15):3193-203. PubMed ID: 21375271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoactivation of rhodopsin and interaction with transducin in detergent micelles. Effect of 'doping' with steroid molecules.
    König B; Welte W; Hofmann KP
    FEBS Lett; 1989 Oct; 257(1):163-6. PubMed ID: 2806558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.