These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18034374)

  • 41. Proteomic analysis of peripheral layers during wheat (Triticum aestivum L.) grain development.
    Tasleem-Tahir A; Nadaud I; Girousse C; Martre P; Marion D; Branlard G
    Proteomics; 2011 Feb; 11(3):371-9. PubMed ID: 21268267
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum).
    Liu H; Sultan MA; Liu XL; Zhang J; Yu F; Zhao HX
    PLoS One; 2015; 10(4):e0121852. PubMed ID: 25859656
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proteomic analysis of S-nitrosylated and S-glutathionylated proteins in wheat seedlings with different dehydration tolerances.
    Gietler M; Nykiel M; Orzechowski S; Fettke J; Zagdańska B
    Plant Physiol Biochem; 2016 Nov; 108():507-518. PubMed ID: 27596017
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A cell-free expression platform for production of protein microarrays.
    Zárate X; Galbraith DW
    Methods Mol Biol; 2014; 1118():297-307. PubMed ID: 24395426
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wheat germ cell-free protein production system for post-genomic research.
    Madono M; Sawasaki T; Morishita R; Endo Y
    N Biotechnol; 2011 Apr; 28(3):211-7. PubMed ID: 20800705
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wheat Germ Cell-Free Overexpression for the Production of Membrane Proteins.
    Fogeron ML; Badillo A; Penin F; Böckmann A
    Methods Mol Biol; 2017; 1635():91-108. PubMed ID: 28755365
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome-scale, biochemical annotation method based on the wheat germ cell-free protein synthesis system.
    Sawasaki T; Hasegawa Y; Morishita R; Seki M; Shinozaki K; Endo Y
    Phytochemistry; 2004 Jun; 65(11):1549-55. PubMed ID: 15276451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cell-Free Synthesis of Plant Receptor Kinases.
    Nozawa A; Nemoto K; Nomura S; Yamanaka S; Kido K; Sawasaki T
    Methods Mol Biol; 2017; 1621():37-46. PubMed ID: 28567641
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Potyvirus genome-linked protein, VPg, directly affects wheat germ in vitro translation: interactions with translation initiation factors eIF4F and eIFiso4F.
    Khan MA; Miyoshi H; Gallie DR; Goss DJ
    J Biol Chem; 2008 Jan; 283(3):1340-1349. PubMed ID: 18045881
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Firm wheat-germ cell-free system with extended vector usage for high-throughput protein screening.
    Lee S; Lassalle MW
    J Biosci Bioeng; 2011 Aug; 112(2):170-7. PubMed ID: 21601517
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Performance benchmarking of four cell-free protein expression systems.
    Gagoski D; Polinkovsky ME; Mureev S; Kunert A; Johnston W; Gambin Y; Alexandrov K
    Biotechnol Bioeng; 2016 Feb; 113(2):292-300. PubMed ID: 26301602
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wheat germ cell-free translation system as a tool for in vitro selection of functional proteins.
    Alexandrov AN; Alakhov VY; Miroshnikov AI
    Comb Chem High Throughput Screen; 2002 Sep; 5(6):473-80. PubMed ID: 12470276
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wheat embryo ribonucleates. XIV. Mass isolation of mRNA from wheat germ and comparison of its translational capacity with that of mRNA from imbibing wheat embryos.
    Cuming AC; Kennedy TD; Lane BG
    Can J Biochem; 1979 Sep; 57(9):1170-5. PubMed ID: 509359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of protein for nuclear magnetic resonance study using the wheat germ cell-free system.
    Kohno T; Endo Y
    Methods Mol Biol; 2007; 375():257-72. PubMed ID: 17634606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wheat proteomics: relationship between fine chromosome deletion and protein expression.
    Islam N; Tsujimoto H; Hirano H
    Proteomics; 2003 Mar; 3(3):307-16. PubMed ID: 12627384
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Developmental changes in the metabolic protein profiles of wheat endosperm.
    Vensel WH; Tanaka CK; Cai N; Wong JH; Buchanan BB; Hurkman WJ
    Proteomics; 2005 Apr; 5(6):1594-611. PubMed ID: 15800972
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Construction of an efficient expression vector for coupled transcription/translation in a wheat germ cell-free system.
    Sawasaki T; Hasegawa Y; Tsuchimochi M; Kasahara Y; Endo Y
    Nucleic Acids Symp Ser; 2000; (44):9-10. PubMed ID: 12903243
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Establishment and optimization of a wheat germ cell-free protein synthesis system and its application in venom kallikrein.
    Wang Y; Xu W; Kou X; Luo Y; Zhang Y; Ma B; Wang M; Huang K
    Protein Expr Purif; 2012 Aug; 84(2):173-80. PubMed ID: 22626528
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Translation of MOPC 21 plasmacytoma cell mRNA in a cell-free wheat germ system].
    Goriunova LE; Sakharova NK; Barbakar' NI; Grechko VV
    Mol Biol (Mosk); 1980; 14(5):1173-86. PubMed ID: 6775186
    [TBL] [Abstract][Full Text] [Related]  

  • 60. iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress.
    Yang Y; Ma L; Zeng H; Chen LY; Zheng Y; Li CX; Yang ZP; Wu N; Mu X; Dai CY; Guan HL; Cui XM; Liu Y
    Gene; 2018 Oct; 675():301-311. PubMed ID: 30180969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.