These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18034453)

  • 1. Accurate annotation of peptide modifications through unrestrictive database search.
    Tanner S; Payne SH; Dasari S; Shen Z; Wilmarth PA; David LL; Loomis WF; Briggs SP; Bafna V
    J Proteome Res; 2008 Jan; 7(1):170-81. PubMed ID: 18034453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential interval motif search: unrestricted database surveys of global MS/MS data sets for detection of putative post-translational modifications.
    Liu J; Erassov A; Halina P; Canete M; Nguyen DV; Chung C; Cagney G; Ignatchenko A; Fong V; Emili A
    Anal Chem; 2008 Oct; 80(20):7846-54. PubMed ID: 18788753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unrestrictive identification of post-translational modifications through peptide mass spectrometry.
    Tanner S; Pevzner PA; Bafna V
    Nat Protoc; 2006; 1(1):67-72. PubMed ID: 17406213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. InsPecT: identification of posttranslationally modified peptides from tandem mass spectra.
    Tanner S; Shu H; Frank A; Wang LC; Zandi E; Mumby M; Pevzner PA; Bafna V
    Anal Chem; 2005 Jul; 77(14):4626-39. PubMed ID: 16013882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of novel modifications by unrestrictive search of tandem mass spectra.
    Na S; Paek E
    J Proteome Res; 2009 Oct; 8(10):4418-27. PubMed ID: 19658439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PeaksPTM: Mass spectrometry-based identification of peptides with unspecified modifications.
    Han X; He L; Xin L; Shan B; Ma B
    J Proteome Res; 2011 Jul; 10(7):2930-6. PubMed ID: 21609001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid method for peptide identification using integer linear optimization, local database search, and quadrupole time-of-flight or OrbiTrap tandem mass spectrometry.
    DiMaggio PA; Floudas CA; Lu B; Yates JR
    J Proteome Res; 2008 Apr; 7(4):1584-93. PubMed ID: 18324765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic assessment of the benefits and caveats in mining microbial post-translational modifications from shotgun proteomic data: the response of Shewanella oneidensis to chromate exposure.
    Thompson MR; Thompson DK; Hettich RL
    J Proteome Res; 2008 Feb; 7(2):648-58. PubMed ID: 18171020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparative peptide isoelectric focusing as a tool for improving the identification of lysine-acetylated peptides from complex mixtures.
    Xie H; Bandhakavi S; Roe MR; Griffin TJ
    J Proteome Res; 2007 May; 6(5):2019-26. PubMed ID: 17397211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for reducing the time required to match protein sequences with tandem mass spectra.
    Craig R; Beavis RC
    Rapid Commun Mass Spectrom; 2003; 17(20):2310-6. PubMed ID: 14558131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Workflow for large scale detection and validation of peptide modifications by RPLC-LTQ-Orbitrap: application to the Arabidopsis thaliana leaf proteome and an online modified peptide library.
    Zybailov B; Sun Q; van Wijk KJ
    Anal Chem; 2009 Oct; 81(19):8015-24. PubMed ID: 19725545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of posttranslational modifications using intact-protein mass spectrometric data.
    Holmes MR; Giddings MC
    Anal Chem; 2004 Jan; 76(2):276-82. PubMed ID: 14719871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale unrestricted identification of post-translation modifications using tandem mass spectrometry.
    Havilio M; Wool A
    Anal Chem; 2007 Feb; 79(4):1362-8. PubMed ID: 17297935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QuickMod: A tool for open modification spectrum library searches.
    Ahrné E; Nikitin F; Lisacek F; Müller M
    J Proteome Res; 2011 Jul; 10(7):2913-21. PubMed ID: 21500769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping protein post-translational modifications with mass spectrometry.
    Witze ES; Old WM; Resing KA; Ahn NG
    Nat Methods; 2007 Oct; 4(10):798-806. PubMed ID: 17901869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Software eyes for protein post-translational modifications.
    Na S; Paek E
    Mass Spectrom Rev; 2015; 34(2):133-47. PubMed ID: 24889695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Mass Distance Fingerprint: a statistical framework for de novo detection of predominant modifications using high-accuracy mass spectrometry.
    Potthast F; Gerrits B; Häkkinen J; Rutishauser D; Ahrens CH; Roschitzki B; Baerenfaller K; Munton RP; Walther P; Gehrig P; Seif P; Seeberger PH; Schlapbach R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jul; 854(1-2):173-82. PubMed ID: 17513179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.