These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18034832)

  • 1. Functional analysis of a novel ABC transporter ABC4 from Magnaporthe grisea.
    Gupta A; Chattoo BB
    FEMS Microbiol Lett; 2008 Jan; 278(1):22-8. PubMed ID: 18034832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease.
    Urban M; Bhargava T; Hamer JE
    EMBO J; 1999 Feb; 18(3):512-21. PubMed ID: 9927411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multidrug resistance transporter in Magnaporthe is required for host penetration and for survival during oxidative stress.
    Sun CB; Suresh A; Deng YZ; Naqvi NI
    Plant Cell; 2006 Dec; 18(12):3686-705. PubMed ID: 17189344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agrobacterium-mediated transformation to create an insertion library in Magnaporthe grisea.
    Tucker SL; Orbach MJ
    Methods Mol Biol; 2007; 354():57-68. PubMed ID: 17172744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel gene MGA1 is required for appressorium formation in Magnaporthe grisea.
    Gupta A; Chattoo BB
    Fungal Genet Biol; 2007 Nov; 44(11):1157-69. PubMed ID: 17462923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale insertional mutagenesis in Magnaporthe oryzae by Agrobacterium tumefaciens-mediated transformation.
    Chen XL; Yang J; Peng YL
    Methods Mol Biol; 2011; 722():213-24. PubMed ID: 21590424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional genomics in the rice blast fungus to unravel the fungal pathogenicity.
    Jeon J; Choi J; Park J; Lee YH
    J Zhejiang Univ Sci B; 2008 Oct; 9(10):747-52. PubMed ID: 18837101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Optimization of T-dNA insertional mutagenesis and analysis of mutants of Magnaporthe grisea].
    Li HY; Pan CY; Chen H; Zhao CJ; Lu GD; Wang ZH
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):419-23. PubMed ID: 15969057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea.
    Clergeot PH; Gourgues M; Cots J; Laurans F; Latorse MP; Pepin R; Tharreau D; Notteghem JL; Lebrun MH
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6963-8. PubMed ID: 11391010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea.
    Rho HS; Kang S; Lee YH
    Mol Cells; 2001 Dec; 12(3):407-11. PubMed ID: 11804343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea.
    Villalba F; Lebrun MH; Hua-Van A; Daboussi MJ; Grosjean-Cournoyer MC
    Mol Plant Microbe Interact; 2001 Mar; 14(3):308-15. PubMed ID: 11277428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation.
    Irie T; Matsumura H; Terauchi R; Saitoh H
    Mol Genet Genomics; 2003 Nov; 270(2):181-9. PubMed ID: 12955499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale analysis of ABC transporter genes and characterization of the ABCC type transporter genes in Magnaporthe oryzae.
    Kim Y; Park SY; Kim D; Choi J; Lee YH; Lee JH; Choi W
    Genomics; 2013 Jun; 101(6):354-61. PubMed ID: 23583668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea.
    Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC
    Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods.
    Gowda M; Venu RC; Raghupathy MB; Nobuta K; Li H; Wing R; Stahlberg E; Couglan S; Haudenschild CD; Dean R; Nahm BH; Meyers BC; Wang GL
    BMC Genomics; 2006 Dec; 7():310. PubMed ID: 17156450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agrobacterium tumefaciens-mediated transformation: An efficient tool for insertional mutagenesis and targeted gene disruption in Harpophora oryzae.
    Liu N; Chen GQ; Ning GA; Shi HB; Zhang CL; Lu JP; Mao LJ; Feng XX; Liu XH; Su ZZ; Lin FC
    Microbiol Res; 2016 Jan; 182():40-8. PubMed ID: 26686612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae.
    Li Y; Que Y; Liu Y; Yue X; Meng X; Zhang Z; Wang Z
    Curr Genet; 2015 Nov; 61(4):641-51. PubMed ID: 25944571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filamentous Fungi (Magnaporthe grisea and Fusarium oxysporum).
    Khang CH; Park SY; Rho HS; Lee YH; Kang S
    Methods Mol Biol; 2006; 344():403-20. PubMed ID: 17033082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence analysis and expression pattern of MGTA1 gene in rice blast pathogen Magnaporthe grisea.
    Wang JY; Liu XH; Lu JP; Lin FC
    J Zhejiang Univ Sci B; 2005 Aug; 6(8):817-24. PubMed ID: 16052717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of MoLDB1 required for vegetative growth, infection-related morphogenesis, and pathogenicity in the rice blast fungus Magnaporthe oryzae.
    Li Y; Liang S; Yan X; Wang H; Li D; Soanes DM; Talbot NJ; Wang Z; Wang Z
    Mol Plant Microbe Interact; 2010 Oct; 23(10):1260-74. PubMed ID: 20831406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.